Voir la notice du chapitre de livre
Mots-clés : $Q$-polynomial graph.
@article{TIMM_2022_28_2_a5,
author = {V. V. Bitkina and A. K. Gutnova},
title = {On {Shilla} graphs with $b = 6$ and $b_{2}\ne c_{2}$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {74--83},
year = {2022},
volume = {28},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a5/}
}
V. V. Bitkina; A. K. Gutnova. On Shilla graphs with $b = 6$ and $b_{2}\ne c_{2}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 74-83. http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a5/
[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin; Heidelberg; NY, 1989, 495 pp. | MR | Zbl
[2] Koolen J. H., Park J., “Shilla distance-regular graphs”, European J. Comb., 31:8 (2010), 2064–2073 | DOI | MR | Zbl
[3] Belousov I. N., Makhnev A. A., “Shilla graphs with $b = 5$ and $b = 6$”, Ural Math. J., 7:2 (2021), 51–58 | DOI | MR | Zbl
[4] Jurishich A., Vidali J., “Extremal $1$-codes in distance-regular graphs of diameter $3$”, Des. Codes Cryptogr., 65 (2012), 29–47 | DOI | MR
[5] Gavrilyuk A. L., Koolen J. H., “A characterization of the graphs of bilinear $(d\times d)$-forms over $\mathbb {F}_2$”, Combinatorika, 39 (2010), 289–321 | DOI | MR