On Shilla graphs with $b = 6$ and $b_{2}\ne c_{2}$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 74-83
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A Shilla graph is a distance-regular graph $\Gamma$ (with valency $k$) of diameter $3$ that has second eigenvalue $\theta_1$ equal to $a=a_3$. In this case $a$ divides $k$ and the parameter $b=b(\Gamma)=k/a$ is defined. A Shilla graph has intersection array $\{ab,(a+1)(b-1),b_2;1,c_2,a(b-1)\}$. J. Koolen and J. Park showed that for fixed $b$ there are finitely many Shilla graphs. Admissible intersection arrays of Shilla graphs were found for $b\in \{2,3\}$ by Koolen and Park in 2010 and for $b\in \{4,5\}$ by A. A. Makhnev and I. N. Belousov in 2021. Makhnev and Belousov also proved the nonexistence of $Q$-polynomial Shilla graphs with $b=5$ and found $Q$-polynomial Shilla graphs with $b=6$. A $Q$‐polynomial Shilla graph with $b=6$ has intersection array $\{42t,5(7t+1),3(t+3);1,3(t+3),35t\}$ with $t\in \{7,12,17,27,57\}$, $\{372,315,75;1,15,310\}$, $\{744,625,125;1,25,620\}$, $\{930,780,150;1,30,775\}$, $\{312,265,48;$ $1,24,260\}$, $\{624,525,80;1,40,520\}$, $\{1794,1500,200;1,100,1495\}$, or $\{5694,4750,600;1,300,4745\}$. The nonexistence of graphs with intersection arrays $\{372,315,75;1,15,310\}$, $\{744,625,125;1,25,620\}$, $\{1794,1500,200;1,$ $100,1495\}$, and $\{42t,5(7t+1),3(t+3);1,3(t+3),35t\}$ was proved earlier. We prove that distance-regular graphs with intersection arrays $\{312,265,48;1,24,260\}$, $\{624,525,80;1,40,520\}$, and $\{930,780,150;1,30,775\}$ do not exist.
Keywords: Shilla graph, distance-regular graph
Mots-clés : $Q$-polynomial graph.
@article{TIMM_2022_28_2_a5,
     author = {V. V. Bitkina and A. K. Gutnova},
     title = {On {Shilla} graphs with $b = 6$ and $b_{2}\ne c_{2}$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {74--83},
     year = {2022},
     volume = {28},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a5/}
}
TY  - JOUR
AU  - V. V. Bitkina
AU  - A. K. Gutnova
TI  - On Shilla graphs with $b = 6$ and $b_{2}\ne c_{2}$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 74
EP  - 83
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a5/
LA  - ru
ID  - TIMM_2022_28_2_a5
ER  - 
%0 Journal Article
%A V. V. Bitkina
%A A. K. Gutnova
%T On Shilla graphs with $b = 6$ and $b_{2}\ne c_{2}$
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 74-83
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a5/
%G ru
%F TIMM_2022_28_2_a5
V. V. Bitkina; A. K. Gutnova. On Shilla graphs with $b = 6$ and $b_{2}\ne c_{2}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 74-83. http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a5/

[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin; Heidelberg; NY, 1989, 495 pp. | MR | Zbl

[2] Koolen J. H., Park J., “Shilla distance-regular graphs”, European J. Comb., 31:8 (2010), 2064–2073 | DOI | MR | Zbl

[3] Belousov I. N., Makhnev A. A., “Shilla graphs with $b = 5$ and $b = 6$”, Ural Math. J., 7:2 (2021), 51–58 | DOI | MR | Zbl

[4] Jurishich A., Vidali J., “Extremal $1$-codes in distance-regular graphs of diameter $3$”, Des. Codes Cryptogr., 65 (2012), 29–47 | DOI | MR

[5] Gavrilyuk A. L., Koolen J. H., “A characterization of the graphs of bilinear $(d\times d)$-forms over $\mathbb {F}_2$”, Combinatorika, 39 (2010), 289–321 | DOI | MR