An object bypassing convex sets and an observer's trajectory in two-dimensional space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 66-73
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An autonomous object $t$ moving under observation in $\mathbb{R}^2$ with constant speed along a shortest curve $\mathcal{T}_t$ with given initial and final points bypasses an ordered family of pairwise disjoint convex sets. The aim of the observer $f$, whose speed is upper bounded, is to find a trajectory $\mathcal{T}_f$ on which the distance to the observer is at each time a certain prescribed value. Possible variants of motion are given for the observer $f$, who tracks the object on different segments of the trajectory $\mathcal{T}_t$.
Mots-clés : navigation, observer.
Keywords: optimal trajectory, moving object
@article{TIMM_2022_28_2_a4,
     author = {V. I. Berdyshev},
     title = {An object bypassing convex sets and an observer's trajectory in two-dimensional space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {66--73},
     year = {2022},
     volume = {28},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a4/}
}
TY  - JOUR
AU  - V. I. Berdyshev
TI  - An object bypassing convex sets and an observer's trajectory in two-dimensional space
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 66
EP  - 73
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a4/
LA  - ru
ID  - TIMM_2022_28_2_a4
ER  - 
%0 Journal Article
%A V. I. Berdyshev
%T An object bypassing convex sets and an observer's trajectory in two-dimensional space
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 66-73
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a4/
%G ru
%F TIMM_2022_28_2_a4
V. I. Berdyshev. An object bypassing convex sets and an observer's trajectory in two-dimensional space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 66-73. http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a4/

[1] Berdyshev V.I., “The observer's trajectory following the object passing the obstacle on the shortest curve”, Eurasian J Math. Comp. Appl., 9:4 (2021), 4–16 | DOI

[2] Lyu V., “Metody planirovaniya puti v srede s prepyatstviyami (obzor)”, Matematika i mat. modelirovanie, 2018, no. 1, 15–58 | DOI