An object bypassing convex sets and an observer's trajectory in two-dimensional space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 66-73
Voir la notice du chapitre de livre
An autonomous object $t$ moving under observation in $\mathbb{R}^2$ with constant speed along a shortest curve $\mathcal{T}_t$ with given initial and final points bypasses an ordered family of pairwise disjoint convex sets. The aim of the observer $f$, whose speed is upper bounded, is to find a trajectory $\mathcal{T}_f$ on which the distance to the observer is at each time a certain prescribed value. Possible variants of motion are given for the observer $f$, who tracks the object on different segments of the trajectory $\mathcal{T}_t$.
Mots-clés :
navigation, observer.
Keywords: optimal trajectory, moving object
Keywords: optimal trajectory, moving object
@article{TIMM_2022_28_2_a4,
author = {V. I. Berdyshev},
title = {An object bypassing convex sets and an observer's trajectory in two-dimensional space},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {66--73},
year = {2022},
volume = {28},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a4/}
}
V. I. Berdyshev. An object bypassing convex sets and an observer's trajectory in two-dimensional space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 66-73. http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a4/