Finite solvable groups whose Gruenberg-Kegel graphs are isomorphic to the paw
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 269-273 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Gruenberg-Kegel graph (or the prime graph) of a finite group $G$ is the graph, in which the vertex set is the set of all prime divisors of the order of $G$ and two different vertices $p$ and $q$ are adjacent if and only if there exists an element of order $pq$ in $G$. The paw is the graph on four vertices whose degrees are 1, 2, 2, and 3. We consider the problem of describing finite groups whose Gruenberg-Kegel graphs are isomorphic as abstract graphs to the paw. For example, the Gruenberg-Kegel graphs of the groups $A_{10}$ and $\mathrm{Aut}(J_2)$ are isomorphic as abstract graphs to the paw. In this paper, we describe finite solvable groups whose Gruenberg-Kegel graphs are isomorphic as abstract graphs to the paw.
Keywords: finite group; solvable group; Gruenberg-Kegel graph; paw.
@article{TIMM_2022_28_2_a20,
     author = {A. S. Kondrat'ev and N. A. Minigulov},
     title = {Finite solvable groups whose {Gruenberg-Kegel} graphs are isomorphic to the paw},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {269--273},
     year = {2022},
     volume = {28},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a20/}
}
TY  - JOUR
AU  - A. S. Kondrat'ev
AU  - N. A. Minigulov
TI  - Finite solvable groups whose Gruenberg-Kegel graphs are isomorphic to the paw
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 269
EP  - 273
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a20/
LA  - en
ID  - TIMM_2022_28_2_a20
ER  - 
%0 Journal Article
%A A. S. Kondrat'ev
%A N. A. Minigulov
%T Finite solvable groups whose Gruenberg-Kegel graphs are isomorphic to the paw
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 269-273
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a20/
%G en
%F TIMM_2022_28_2_a20
A. S. Kondrat'ev; N. A. Minigulov. Finite solvable groups whose Gruenberg-Kegel graphs are isomorphic to the paw. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 269-273. http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a20/

[1] Aschbacher M., Finite group theory, Cambridge Univ. Press, Cambridge, 1986, 274 pp. | MR | Zbl

[2] Conway J.N., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A., Atlas of finite groups, Oxford Univ. Press, Oxford, 1985, 252 pp. | MR | Zbl

[3] Gorenstein D., Finite groups, Harper and Row, NY, 1968, 574 pp. | MR | Zbl

[4] Kondrat'ev A.S., “Finite groups with prime graph as in the group Aut($J_2$)”, Proc. Steklov Inst. Math., 283:suppl. 1 (2013), 78–85 | DOI | MR

[5] Kondrat'ev A.S., “Finite groups that have the same prime graph as the group $A_{10}$”, Proc. Steklov Inst. Math., 285:suppl. 1 (2014), 99–107 | DOI | MR

[6] Kondrat'ev A.S., Minigulov N.A., “Finite almost simple groups whose Gruenberg–Kegel graphs as abstract graphs are isomorphic to subgraphs of the Gruenberg–Kegel graph of the alternating group $A_{10}$”, Siberian Electr. Math. Rep., 15 (2018), 1378–1382 | DOI | MR

[7] Kondrat'ev A.S., Minigulov N.A., “On finite non-solvable groups whose Gruenberg–Kegel graphs are isomorphic to the paw”, Commun. Math. Stat., 2021 | DOI

[8] Williams J.S., “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[9] Zinov'eva M.R., Mazurov V.D., “On finite groups with disconnected prime graph”, Proc. Steklov Inst. Math., 283:suppl. 1 (2013), 139–145 | DOI | MR