On a class of vertex-primitive arc-transitive amply regular graphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 258-268
Voir la notice de l'article provenant de la source Math-Net.Ru
A simple $k$-regular graph with $v$ vertices is an amply regular graph with parameters $(v, k, \lambda, \mu)$ if any two adjacent vertices have exactly $\lambda$ common neighbors and any two vertices which are at distance $2$ in this graph have exactly $\mu$ common neighbors. Let $G$ be a finite group, $H \le G$, ${\mathfrak{H}} = \{H^g \,|\, g \in G \}$ be the corresponding conjugacy class of subgroups of $G$, and $1 \le d $ be an integer. We construct a simple graph $\Gamma(G, H, d)$ as follows. The vertices of $\Gamma(G, H, d)$ are the elements of ${\mathfrak{H}}$, and two vertices $H_1$ and $H_2$ from ${\mathfrak{H}}$ are adjacent in $\Gamma(G, H, d)$ if and only if $|H_1 \cap H_2| = d$. In this paper we prove that if $q$ is a prime power with $13 \le q \equiv 1 \pmod{4}$, $G=SL_2(q)$, and $H$ is a dihedral maximal subgroup of $G$ of order $2(q-1)$, then the graph $\Gamma(G, H, 8)$ is a vertex-primitive arc-transitive amply regular graph with parameters $\left(\dfrac{q(q+1)}{2}, \dfrac{q-1}{2}, 1, 1\right)$ and with ${\rm Aut}(PSL_2(q))\le {\rm Aut}(\Gamma)$. Moreover, we prove that $\Gamma(G, H, 8)$ has a perfect $1$-code, in particular, its diameter is more than $2$.
Keywords:
finite simple group; arc-transitive graph; amply regular graph; edge-regular graph; graph of girth 3; Deza graph; perfect 1-code.
@article{TIMM_2022_28_2_a19,
author = {M. P. Golubyatnikov and N. V. Maslova},
title = {On a class of vertex-primitive arc-transitive amply regular graphs},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {258--268},
publisher = {mathdoc},
volume = {28},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a19/}
}
TY - JOUR AU - M. P. Golubyatnikov AU - N. V. Maslova TI - On a class of vertex-primitive arc-transitive amply regular graphs JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 258 EP - 268 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a19/ LA - en ID - TIMM_2022_28_2_a19 ER -
M. P. Golubyatnikov; N. V. Maslova. On a class of vertex-primitive arc-transitive amply regular graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 258-268. http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a19/