Voir la notice du chapitre de livre
@article{TIMM_2022_28_2_a19,
author = {M. P. Golubyatnikov and N. V. Maslova},
title = {On a class of vertex-primitive arc-transitive amply regular graphs},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {258--268},
year = {2022},
volume = {28},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a19/}
}
TY - JOUR AU - M. P. Golubyatnikov AU - N. V. Maslova TI - On a class of vertex-primitive arc-transitive amply regular graphs JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 258 EP - 268 VL - 28 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a19/ LA - en ID - TIMM_2022_28_2_a19 ER -
M. P. Golubyatnikov; N. V. Maslova. On a class of vertex-primitive arc-transitive amply regular graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 258-268. http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a19/
[1] Akers S.B., Harel D., and Krishnamurthy B., “The star graph: an attractive alternative to the $n$-cube”, Proc. Int. Conf. Parallel Processing, 1987, 393–400
[2] Bray J.N., Holt D.F., Roney-Dougal C.M., The maximal subgroups of the low-dimensional finite classical groups, Cambridge Univ. Press, Cambridge, 2013, 438 pp. | DOI | MR | Zbl
[3] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin etc, 1989, 495 pp. | MR | Zbl
[4] GAP - Groups, Algorithms, Programming - a system for computational discrete algebra, Version 4.10.1, 2019 URL: https://www.gap-system.org
[5] Godsil C., Royle G., Algebraic graph theory, Springer, NY, 2001, 443 pp. | DOI | MR | Zbl
[6] Koblitz N., “Finite fields and quadratic residues”, A course in number theory and cryptography, Graduate Texts in Mathematics, 114, Springer, NY, 1994, 31–53 | DOI | MR
[7] Lakshmivarahan S., Jwo J.-S., Dhall S.K., “Symmetry in interconnection networks based on Cayley graphs of permutation groups: A survey”, Parallel Comput., 19 (1993), 361–407 | DOI | MR | Zbl
[8] Lovasz L., “Combinatorial structures and their applications”, Proc. Calgary Internat. Conf. Calgary (Alberta, 1969), Gordon and Breach, NY, 1970, 243–246
[9] Marusic D. and Scapellato R., “A class of non-Cayley vertex-transitive graphs associated with $PSL(2,p)$”, Discrete Math., 109:1–3 (1992), 161–170 | DOI | MR | Zbl
[10] Maslova N.V., “Classification of maximal subgroups of odd index in finite simple classical groups: Addendum”, Siberian Electron. Math. Reports, 15 (2018), 707–718 | DOI | MR | Zbl
[11] Mulder M., “(0,$\lambda$)-graphs and $n$-cubes”, Discrete Math., 28:2 (1979), 179–188 | DOI | MR | Zbl
[12] Ray B.N.B., “Parallel algorithm for Hermite interpolation on the star graph”, International J. Advanced Research in Comp. Sci. and Soft. Engineering, 5:5 (2015), 1019–1026