On the solvability of a system of nonlinear integral equations with a monotone Hammerstein type operator
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 201-214
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A system of nonlinear integral equations with a noncompact monotone Hammerstein type matrix integral operator is studied on the positive half-line. For specific representations of matrix kernels and nonlinearities involved in the system, the class of vector nonlinear integral equations under consideration has applications in various areas of mathematical physics. In particular, such systems arise in the theory of radiative transfer in inhomogeneous media, in the kinetic theory of gases, and in mathematical biology. The existence of a nontrivial componentwise nonnegative and bounded solution is proved. In one important particular case, the integral asymptotic behavior of the constructed solution is also studied. At the end of the paper, specific examples of nonlinearities and matrix kernels that satisfy the conditions of the formulated theorems are given.
Keywords: monotonicity, bounded solution, iterations, convexity, nonlinearity
Mots-clés : convergence.
@article{TIMM_2022_28_2_a16,
     author = {Kh. A. Khachatryan and H. S. Petrosyan},
     title = {On the solvability of a system of nonlinear integral equations with a monotone {Hammerstein} type operator},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {201--214},
     year = {2022},
     volume = {28},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a16/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
AU  - H. S. Petrosyan
TI  - On the solvability of a system of nonlinear integral equations with a monotone Hammerstein type operator
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 201
EP  - 214
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a16/
LA  - ru
ID  - TIMM_2022_28_2_a16
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%A H. S. Petrosyan
%T On the solvability of a system of nonlinear integral equations with a monotone Hammerstein type operator
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 201-214
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a16/
%G ru
%F TIMM_2022_28_2_a16
Kh. A. Khachatryan; H. S. Petrosyan. On the solvability of a system of nonlinear integral equations with a monotone Hammerstein type operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 201-214. http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a16/

[1] Lankaster P., Teoriya matrits, Nauka, M., 1973, 280 pp. | MR

[2] Sobolev V.V., “Problema Milna dlya neodnorodnoi atmosfery”, Dokl. AN SSSR, 239:3 (1978), 558–561 | MR

[3] Arabadzhyan L.G., “Ob odnom integralnom uravnenii teorii perenosa v neodnorodnoi srede”, Differents. uravneniya, 23:9 (1987), 1618–1622 | MR | Zbl

[4] Cercignani C., The Boltzmann equation and its applications, Springer-Verlag, NY, 1988, 455 pp. | DOI | MR | Zbl

[5] Khachatryan A.Kh., Khachatryan Kh.A., “On solvability of one infinite system of nonlinear functional equations in the theory of epidemics”, Eurasian Math. J., 11:2 (2020), 52–64 | DOI | MR | Zbl

[6] Diekmann O., “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 6:2 (1978), 109–130 | DOI | MR | Zbl

[7] Sargan I.D., “The distribution of wealth”, Econometrics, 25:4 (1957), 568–590 | DOI | MR | Zbl

[8] Khachatryan Kh.A., “On some systems of nonlinear integral Hammerstein-type equations on the semiaxis”, Ukrainian Math. J., 62:4 (2010), 630–674 | DOI | MR

[9] Khachatryan Kh.A., Terdzhyan Ts.E., Sardaryan T.G., “O razreshimosti odnoi sistemy nelineinykh integralnykh uravnenii tipa Gammershteina na poluosi”, Ukr. mat. zhurn., 69:8 (2017), 1107–1122

[10] Khachatryan Kh.A., Petrosyan H.S., “Solvability of a certain system of singular integral equations with convex nonlinearity on the positive half-line”, Russian Math., 65:1 (2021), 27–48 | DOI | MR

[11] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981, 544 R pp. | MR

[12] Arabadzhyan L.G., Engibaryan N.B., “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhniki. Ser. Mat. analiz, no. 22, VINITI, M., 1984, 175–244 | MR