An intermediate boundary layer in singularly perturbed first-order equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 193-200 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Cauchy problem for a first-order ordinary differential equation with a small parameter at the derivative and a singular initial point is studied. A sufficient condition is found under which an intermediate boundary layer appears in a singularly perturbed problem described by first-order ordinary differential equations. A complete asymptotic expansion of the solution in the form of an asymptotic series in the sense of Erdélyi is constructed using a modified method of boundary functions. The obtained decomposition is justified; i.e. an estimate for the remainder term is obtained.
Keywords: boundary layer, intermediate boundary layer, Cauchy problem, singularly perturbed problem, bisingular problem, modified boundary function method, asymptotic solution.
@article{TIMM_2022_28_2_a15,
     author = {D. A. Tursunov and G. A. Omaralieva},
     title = {An intermediate boundary layer in singularly perturbed first-order equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {193--200},
     year = {2022},
     volume = {28},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a15/}
}
TY  - JOUR
AU  - D. A. Tursunov
AU  - G. A. Omaralieva
TI  - An intermediate boundary layer in singularly perturbed first-order equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 193
EP  - 200
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a15/
LA  - ru
ID  - TIMM_2022_28_2_a15
ER  - 
%0 Journal Article
%A D. A. Tursunov
%A G. A. Omaralieva
%T An intermediate boundary layer in singularly perturbed first-order equations
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 193-200
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a15/
%G ru
%F TIMM_2022_28_2_a15
D. A. Tursunov; G. A. Omaralieva. An intermediate boundary layer in singularly perturbed first-order equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 193-200. http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a15/

[1] Lomov S.A., Lomov I.S., Osnovy matematicheskoi teorii pogranichnogo sloya, Izd-vo Mosk. un-ta, M., 2011, 456 pp.

[2] Butuzov V.F., “Asimptotika kontrastnoi struktury tipa stupenki v statsionarnoi chastichno dissipativnoi sisteme uravnenii”, Zhurn. vychisl. matematiki i mat. fiziki, 61:1 (2021), 57–84 | Zbl

[3] Kalyakin L.A., “Asimptotika resheniya sistemy uravnenii Landau–Lifshitsa pri dinamicheskoi bifurkatsii sedlo-uzel”, Algebra i analiz, 33:2 (2021), 56–81

[4] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka. Gl. red. fiz.-mat. lit., M., 1989, 336 pp. | MR

[5] Ilin A.M., Danilin A.R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009, 248 pp.

[6] Tursunov D.A., “Asymptotic solution of linear bisingular problems with additional boundary layer”, Russian Math., 62:3 (2018), 60–67 | DOI | MR | Zbl

[7] Tursunov D.A., “The asymptotic solution of the three-band bisingularly problem”, Lobachevskii J. Math., 38:3 (2017), 542–546 | DOI | MR | Zbl

[8] Naife A., Vvedenie v metody vozmuschenii, Mir, M., 1984, 535 pp.