On the Coincidence of Gruenberg--Kegel Graphs of an Almost Simple Group and a Nonsolvable Frobenius Group
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 168-175
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $G$ be a finite group. Its spectrum $\omega(G)$ is the set of all element orders of $G$. The prime spectrum $\pi(G)$ is the set of all prime divisors of the order of $G$. The Gruenberg–Kegel graph (or the prime graph) $\Gamma(G)$ is the simple graph with vertex set $\pi(G)$ in which any two vertices $p$ and $q$ are adjacent if and only if $pq \in \omega(G)$. The structural Gruenberg–Kegel theorem implies that the class of finite groups with disconnected Gruenberg–Kegel graphs widely generalizes the class of finite Frobenius  groups, whose role in finite group theory is absolutely exceptional. The question of coincidence of Gruenberg–Kegel graphs of a finite Frobenius group and of an almost simple group naturally arises. The answer to the question is known in the cases when the Frobenius group is solvable and when the almost simple group coincides with its socle. In this short note we answer the question in the case when the Frobenius group is nonsolvable and the socle of the almost simple group is isomorphic to $PSL_2(q)$ for some $q$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
finite group, Gruenberg–Kegel graph (prime graph), almost simple group.
Mots-clés : nonsolvable Frobenius group
                    
                  
                
                
                Mots-clés : nonsolvable Frobenius group
@article{TIMM_2022_28_2_a12,
     author = {N. V. Maslova and K. A. Il'enko},
     title = {On the {Coincidence} of {Gruenberg--Kegel} {Graphs} of an {Almost} {Simple} {Group} and a {Nonsolvable} {Frobenius} {Group}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {168--175},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a12/}
}
                      
                      
                    TY - JOUR AU - N. V. Maslova AU - K. A. Il'enko TI - On the Coincidence of Gruenberg--Kegel Graphs of an Almost Simple Group and a Nonsolvable Frobenius Group JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 168 EP - 175 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a12/ LA - ru ID - TIMM_2022_28_2_a12 ER -
%0 Journal Article %A N. V. Maslova %A K. A. Il'enko %T On the Coincidence of Gruenberg--Kegel Graphs of an Almost Simple Group and a Nonsolvable Frobenius Group %J Trudy Instituta matematiki i mehaniki %D 2022 %P 168-175 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a12/ %G ru %F TIMM_2022_28_2_a12
N. V. Maslova; K. A. Il'enko. On the Coincidence of Gruenberg--Kegel Graphs of an Almost Simple Group and a Nonsolvable Frobenius Group. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 168-175. http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a12/
