Analytic diffusion waves in a nonlinear parabolic “predator-prey” model
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 158-167
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a system of two nonlinear degenerate parabolic equations that are nonlinear generalizations of the Fisher–Kolmogorov–Petrovskii–Piskunov equation. This system is the basis for the predator–prey mathematical model. Its interesting peculiarity is that it has solutions of the diffusion (heat, filtration) wave type propagating over a zero background with a finite velocity. This peculiarity is a consequence of nonlinear degeneracy. We consider the problem of constructing a diffusion wave of the system that has a known law of front motion. A theorem of existence and uniqueness of a piecewise analytic solution is proved. The proof is constructive: we find a solution in the form of power series and give recursive formulas for the coefficients. The local convergence is proved by the majorant method. The obtained results follow the tradition of Academician A. F. Sidorov's scientific school to use the power series method to solve degenerate parabolic problems. Note that similar studies were previously conducted for single equations, as well as for reaction–diffusion systems that were significantly simpler in structure than the one mentioned above. The increased complexity makes it impossible to automatically transfer the earlier results to the case under consideration and affects both the construction of the solution and the proof of convergence. The convergence is local, but the obtained exact solutions of traveling wave type can illustrate the behavior of the solution outside the convergence domain. In order to construct the solution, we reduce the original problem to the Cauchy problem for a system of ordinary differential equations. This system is integrated in quadratures, and its solutions are written explicitly. The obtained formulas may be used to verify numerical calculations.
Keywords: nonlinear degenerate parabolic system, predator–prey model, existence theorem, power series, majorant method
Mots-clés : diffusion wave, exact solutions.
@article{TIMM_2022_28_2_a11,
     author = {P. A. Kuznetsov},
     title = {Analytic diffusion waves in a nonlinear parabolic {\textquotedblleft}predator-prey{\textquotedblright} model},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {158--167},
     year = {2022},
     volume = {28},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a11/}
}
TY  - JOUR
AU  - P. A. Kuznetsov
TI  - Analytic diffusion waves in a nonlinear parabolic “predator-prey” model
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 158
EP  - 167
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a11/
LA  - ru
ID  - TIMM_2022_28_2_a11
ER  - 
%0 Journal Article
%A P. A. Kuznetsov
%T Analytic diffusion waves in a nonlinear parabolic “predator-prey” model
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 158-167
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a11/
%G ru
%F TIMM_2022_28_2_a11
P. A. Kuznetsov. Analytic diffusion waves in a nonlinear parabolic “predator-prey” model. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 158-167. http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a11/

[1] Perthame B., Parabolic equations in biology. Growth, reaction, movement and diffusion, Springer, Cham, 2015, 199 pp. | MR | Zbl

[2] Fisher R.A., “The wave of advance of advantageous genes”, Ann. Eugenics, 7:4 (1937), 353–369 | DOI

[3] Kolmogorov A.N., Petrovskii I.G., Piskunov N.S., “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byul. MGU. Matematika i mekhanika, 1:6 (1937), 1–26

[4] Achouri T., Ayadi M., Habbal A., Yahyaoui B., “Numerical analysis for the two-dimensional Fisher-Kolmogorov-Petrovski-Piskunov equation with mixed boundary condition”, J. Appl. Math. Comp., 2021, no. 1, 1–26 | DOI | MR

[5] Aleshin S.V., Glyzin S.D., Kaschenko S.A., “Uravnenie Kolmogorova–Petrovskogo–Piskunova s zapazdyvaniem”, Modelirovanie i analiz inform. sistem, 22:2 (2015), 304–321 | DOI | MR

[6] Viguerie A. et al., “Diffusion-reaction compartmental models formulated in a continuum mechanics framework: application to COVID-19, mathematical analysis, and numerical study”, Comput. Mech., 66:5 (2020), 1131–1152 | DOI | MR | Zbl

[7] Murray J.D., Mathematical biology II: Spatial models and biomedical applications, Interdisciplinary Appl. Math., 18, Springer, NY, 2003, 837 pp. | DOI | MR

[8] Samarskii A.A., Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987, 480 pp. | MR

[9] Zeldovich Ya.B., Raizer Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Fizmatlit, M., 1966, 632 pp.

[10] Barenblatt G.I., Entov V.N., Ryzhik V.M., Dvizhenie zhidkostei i gazov v prirodnykh plastakh, Nedra, M., 1984, 211 pp.

[11] Sidorov A.F., Izbrannye trudy: Matematika. Mekhanika, Fizmatlit, M., 2001, 576 pp. | MR

[12] Bautin S.P., Analiticheskaya teplovaya volna, Fizmatlit, M., 2003, 88 pp.

[13] Kazakov A.L., Lempert A.A., “Analiticheskoe i chislennoe issledovanie odnoi kraevoi zadachi nelineinoi filtratsii s vyrozhdeniem”, Vychislitelnye tekhnologii, 17:1 (2012), 57–68 | Zbl

[14] Kazakov A.L., “O tochnykh resheniyakh kraevoi zadachi o dvizhenii teplovoi volny dlya uravneniya nelineinoi teploprovodnosti”, Sib. elektron. mat. izv., 16 (2019), 1057–1068 | DOI | Zbl

[15] Filimonov M.Yu., Korzunin L.G., Sidorov A.F., “Approximate methods for solving nonlinear initial boundary-value problems based on special construction of series”, Russ. J. Numer. Anal. Math. Modelling, 8:2 (1993), 101–125 | DOI | MR | Zbl

[16] Kazakov A.L., Kuznetsov P.A., “Ob analiticheskikh resheniyakh odnoi spetsialnoi kraevoi zadachi dlya nelineinogo uravneniya teploprovodnosti v polyarnykh koordinatakh”, Sib. zhurn. industr. matematiki, 21:2 (74) (2018), 56–65 | Zbl

[17] Kazakov A.L., Kuznetsov P.A., Lempert A.A., “Analytical solutions to the singular problem for a system of nonlinear parabolic equations of the reaction-diffusion type”, Symmetry, 12:6 (2020), 999 | DOI

[18] Kazakov A.L., Kuznetsov P.A., Spevak L.F., “Postroenie reshenii kraevoi zadachi s vyrozhdeniem dlya nelineinoi parabolicheskoi sistemy”, Sib. zhurn. industr. matematiki, 24:4 (88) (2021), 64–78 | DOI | MR

[19] Vasin V.V., Akimova E.N., Miniakhmetova A.F., “Iteratsionnye algoritmy nyutonovskogo tipa i ikh prilozheniya k obratnoi zadache gravimetrii”, Vestn. YuUrGU. Ser.: Matematicheskoe modelirovanie i programmirovanie, 6:3 (2013), 26–37 | Zbl

[20] Korotkii A.I., Starodubtseva Yu.V., Modelirovanie pryamykh i obratnykh granichnykh zadach dlya statsionarnykh modelei teplomassoperenosa, Izd-vo Ural. un-ta, Ekaterinburg, 2015, 168 pp.

[21] Kovrizhnykh O.O., “O postroenii asimptoticheskogo resheniya nelineinogo vyrozhdayuschegosya parabolicheskogo uravneniya”, Zhurn. vychisl. matatiki i mat. fiziki, 43:10 (2003), 1487–1493 | MR | Zbl

[22] Filimonov M.Yu., “Representation of solutions of boundary value problems for nonlinear evolution equations by special series with recurrently caculated coefficients”, Journal of Physics: Conference Series, 1268 (2019), 012071 | DOI

[23] Kazakov A.L., Kuznetsov P.A., Spevak L.F., “Ob odnoi kraevoi zadache s vyrozhdeniem dlya nelineinogo uravneniya teploprovodnosti v sfericheskikh koordinatakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 119–129 | MR

[24] Kazakov A.L., Orlov Sv.S., Orlov S.S., “Postroenie i issledovanie nekotorykh tochnykh reshenii nelineinogo uravneniya teploprovodnosti”, Sib. mat. zhurn., 59:3 (2018), 544–560 | MR | Zbl

[25] Arnold V.I., Obyknovennye differentsialnye uravneniya, MTsNMO, M., 2012, 344 pp.

[26] Vasin V.V., Sidorov A.F., “O nekotorykh metodakh priblizhennogo resheniya differentsialnykh i integralnykh uravnenii”, Izvestiya vuzov. Matematika, 1983, no. 7, 13–27 | Zbl

[27] Kedrin V.S., Arguchintsev A.V., Dobrinets I.M., “Mechanisms of polymorphic systematization of bioecological data within the BaikalIntelli platform for organizing computational models of population dynamics”, Journal of Physics: Conference Series, 1847 (2021), 012029 | DOI