Assimilating Data on the Location of the Free Surface of a Fluid Flow to Determine Its Viscosity
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 143-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a model of a two-phase immiscible incompressible viscous fluid flow and solve an inverse problem to determine the fluid viscosity from a known location of its free surface. The mathematical model of the fluid flow is reduced to solving a problem described by the Navier–Stokes equation in the field of gravity, the incompressibility equation, and the advection equation for the interface between the two phases and is supplemented by relevant initial and boundary conditions. The fluid density and viscosity depend on the spatial coordinates and time. The considered problem is ill-posed, as small errors in the initial data and computations may lead to large errors in the solution. The numerical modeling of such problems requires the use of special methods that guarantee the stability of the computational process with respect to the errors. The aim of this work is to develop methods and algorithms for a stable numerical modeling of the inverse problem. To solve the inverse problem, we propose to use a variational method and to replace the original problem with an extremal problem of minimizing a suitable functional of the discrepancy between the measurements of the location of the fluid's free surface and its location obtained from the solution of a specially constructed dynamic control system. The desired solution of this extremal problem is iteratively approximated by solutions of terminal–boundary value control problems for the adjoint system, which represents the gradient of the objective functional. A difficulty of this approach is associated with the numerical simulation of the control problems due to their nonlinearity. Some variants of gradient methods can be applied to minimize the discrepancy functional. The gradient of this functional and the descent step along the negative gradient are determined analytically allowing for an essential reduction of computations.
Mots-clés : viscous fluid, incompressible fluid, gradient descent method.
Keywords: two-phase fluid, inverse problem, discrepancy functional, variational method
@article{TIMM_2022_28_2_a10,
     author = {A. I. Korotkii and I. A. Tsepelev and A. T. Ismail-Zadeh},
     title = {Assimilating {Data} on the {Location} of the {Free} {Surface} of a {Fluid} {Flow} to {Determine} {Its} {Viscosity}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {143--157},
     year = {2022},
     volume = {28},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a10/}
}
TY  - JOUR
AU  - A. I. Korotkii
AU  - I. A. Tsepelev
AU  - A. T. Ismail-Zadeh
TI  - Assimilating Data on the Location of the Free Surface of a Fluid Flow to Determine Its Viscosity
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 143
EP  - 157
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a10/
LA  - ru
ID  - TIMM_2022_28_2_a10
ER  - 
%0 Journal Article
%A A. I. Korotkii
%A I. A. Tsepelev
%A A. T. Ismail-Zadeh
%T Assimilating Data on the Location of the Free Surface of a Fluid Flow to Determine Its Viscosity
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 143-157
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a10/
%G ru
%F TIMM_2022_28_2_a10
A. I. Korotkii; I. A. Tsepelev; A. T. Ismail-Zadeh. Assimilating Data on the Location of the Free Surface of a Fluid Flow to Determine Its Viscosity. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 143-157. http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a10/

[1] Jacobs C.T., Collins G.S., Piggott M.D., Kramer S.C., Wilson C.R.G., “Multiphase flow modelling of volcanic ash particle settling in water usin adaptive unstructured meshes”, Geophysical J. Intern., 192:2 (2013), 647–665 | DOI

[2] Tsepelev I., Ismail-Zadeh A., Melnik O., “3D numerical modelling of the Summit Lake lava flow, Yellowstone, USA”, Izv. Phys. Solid Earth, 57:2 (2021), 257–265 | DOI

[3] Zeinalova N., Ismail-Zadeh A., Melnik O., Tsepelev I., Zobin V., “Lava dome morphology and viscosity inferred from data-driven numerical modeling of dome growth at Volcán de Colima, Mexico during 2007–2009”, Front. Earth Sci., 9 (2021), 735914 | DOI

[4] Chandrasekhar S., Hydrodynamic and hydromagnetic stability, Clarendon Press, Oxford, 1961, 652 pp. | MR | Zbl

[5] Landau L.D., Lifshits E.M., Gidrodinamika, Nauka, M., 1986, 736 pp. | MR

[6] Prosperetti A., Tryggvason G., Computational methods for multiphase flow, Cambridge Univ. Press, Cambridge; NY; Melbourne; Madrid; Cape Town; Singapore; Sao Paulo, 2007, 470 pp. | MR

[7] Kolev N.I., Multiphase flow dynamics, Springer-Verlag, Berlin; Heidelberg, 2011, 781 pp. | MR

[8] Nigmatulin R.I., Dinamika mnogofaznykh sred, v. Ch. 1, Nauka, M., 1987, 464 pp.

[9] Ladyzhenskaya O.A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Gos. izd-vo fiz.-mat. lit-ry, M., 1961, 204 pp. | MR

[10] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981, 408 pp. | MR

[11] Lions Zh.L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 587 pp.

[12] Fursikov A.V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i praktika, Nauchnaya kniga, Novosibirsk, 1999, 352 pp.

[13] Antontsev S.N., Kazhikhov A.V., Monakhov V.N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983, 320 pp. | MR

[14] Kazhikhov A.V., Izbrannye trudy. Matematicheskaya gidrodinamika, Izd-vo In-ta gidrodinamiki im. M.A. Lavrenteva SO RAN, Novosibirsk, 2008, 420 pp.

[15] Alekseev G.V., Tereshko D.A., Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008, 364 pp.

[16] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp.

[17] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ikh prilozheniya, Nauka, M., 1978, 206 pp.

[18] Kabanikhin S.I., Obratnye i nekorrektnye zadachi, Sib. nauch. izd-vo, Novosibirsk, 2009, 457 pp.

[19] Samarskii A.A., Vabischevich P.N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, URSS, M., 2004, 480 pp.

[20] Ismail-Zadeh A., Tackley P., Computational methods for geodynamics, Cambridge Univ. Press, Cambridge, 2010, 313 pp. | MR

[21] Vasilev F.P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[22] Nocedal J., Wright S.J., Numerical optimization, Springer, NY, 1999, 664 pp. | MR | Zbl

[23] Ismail-Zadeh A., Korotkii A., Tsepelev I., Data-driven numerical modelling in geodynamics: Methods and applications, Springer Intern. Publ., Berlin, 2016, 105 pp. | DOI | MR

[24] Korotkii A., Kovtunov D., Ismail-Zadeh A., Tsepelev I., Melnik O., “Quantitative reconstruction of thermal and dynamic characteristics of volcanic lava from surface thermal measurements”, Geophysical J. Intern., 205:3 (2016), 1767–1779 | DOI

[25] Korotkii A.I., “Obratnye zadachi o vosstanovlenii parametrov sistemy Nave–Stoksa”, Sovremennaya matematika i ee prilozheniya, 26, Nelineinaya dinamika, 2005, 54–77

[26] Tsepelev I., Ismail-Zadeh A., Melnik O., “Lava dome morphology inferred from numerical modelling”, Geoph. J. Intern., 223:3 (2020), 1597–1609 | DOI

[27] Kaltenbacher B., Neubauer A., Scherzer O., Iterative regularization methods for nonlinear ill-posed problems, v. 6, Walter de Gruyter, Berlin, 2008, 202 pp. | MR

[28] Wolfe P., “Convergence conditions for ascent methods II: Some corrections”, SIAM Review, 13 (1971), 185–188 | DOI | MR | Zbl

[29] Gilbert J.Ch., Nocedal J., “Global convergence properties of conjugate gradient methods for optimization”, SIAM J. Optimization, 2:1 (1992), 21–42 | DOI | MR | Zbl

[30] Sea Zh., Optimizatsiya. Teoriya i algoritmy, Mir, M., 1973, 244 pp.