Keywords: two-phase fluid, inverse problem, discrepancy functional, variational method
@article{TIMM_2022_28_2_a10,
author = {A. I. Korotkii and I. A. Tsepelev and A. T. Ismail-Zadeh},
title = {Assimilating {Data} on the {Location} of the {Free} {Surface} of a {Fluid} {Flow} to {Determine} {Its} {Viscosity}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {143--157},
year = {2022},
volume = {28},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a10/}
}
TY - JOUR AU - A. I. Korotkii AU - I. A. Tsepelev AU - A. T. Ismail-Zadeh TI - Assimilating Data on the Location of the Free Surface of a Fluid Flow to Determine Its Viscosity JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 143 EP - 157 VL - 28 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a10/ LA - ru ID - TIMM_2022_28_2_a10 ER -
%0 Journal Article %A A. I. Korotkii %A I. A. Tsepelev %A A. T. Ismail-Zadeh %T Assimilating Data on the Location of the Free Surface of a Fluid Flow to Determine Its Viscosity %J Trudy Instituta matematiki i mehaniki %D 2022 %P 143-157 %V 28 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a10/ %G ru %F TIMM_2022_28_2_a10
A. I. Korotkii; I. A. Tsepelev; A. T. Ismail-Zadeh. Assimilating Data on the Location of the Free Surface of a Fluid Flow to Determine Its Viscosity. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 143-157. http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a10/
[1] Jacobs C.T., Collins G.S., Piggott M.D., Kramer S.C., Wilson C.R.G., “Multiphase flow modelling of volcanic ash particle settling in water usin adaptive unstructured meshes”, Geophysical J. Intern., 192:2 (2013), 647–665 | DOI
[2] Tsepelev I., Ismail-Zadeh A., Melnik O., “3D numerical modelling of the Summit Lake lava flow, Yellowstone, USA”, Izv. Phys. Solid Earth, 57:2 (2021), 257–265 | DOI
[3] Zeinalova N., Ismail-Zadeh A., Melnik O., Tsepelev I., Zobin V., “Lava dome morphology and viscosity inferred from data-driven numerical modeling of dome growth at Volcán de Colima, Mexico during 2007–2009”, Front. Earth Sci., 9 (2021), 735914 | DOI
[4] Chandrasekhar S., Hydrodynamic and hydromagnetic stability, Clarendon Press, Oxford, 1961, 652 pp. | MR | Zbl
[5] Landau L.D., Lifshits E.M., Gidrodinamika, Nauka, M., 1986, 736 pp. | MR
[6] Prosperetti A., Tryggvason G., Computational methods for multiphase flow, Cambridge Univ. Press, Cambridge; NY; Melbourne; Madrid; Cape Town; Singapore; Sao Paulo, 2007, 470 pp. | MR
[7] Kolev N.I., Multiphase flow dynamics, Springer-Verlag, Berlin; Heidelberg, 2011, 781 pp. | MR
[8] Nigmatulin R.I., Dinamika mnogofaznykh sred, v. Ch. 1, Nauka, M., 1987, 464 pp.
[9] Ladyzhenskaya O.A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Gos. izd-vo fiz.-mat. lit-ry, M., 1961, 204 pp. | MR
[10] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981, 408 pp. | MR
[11] Lions Zh.L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 587 pp.
[12] Fursikov A.V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i praktika, Nauchnaya kniga, Novosibirsk, 1999, 352 pp.
[13] Antontsev S.N., Kazhikhov A.V., Monakhov V.N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983, 320 pp. | MR
[14] Kazhikhov A.V., Izbrannye trudy. Matematicheskaya gidrodinamika, Izd-vo In-ta gidrodinamiki im. M.A. Lavrenteva SO RAN, Novosibirsk, 2008, 420 pp.
[15] Alekseev G.V., Tereshko D.A., Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008, 364 pp.
[16] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp.
[17] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ikh prilozheniya, Nauka, M., 1978, 206 pp.
[18] Kabanikhin S.I., Obratnye i nekorrektnye zadachi, Sib. nauch. izd-vo, Novosibirsk, 2009, 457 pp.
[19] Samarskii A.A., Vabischevich P.N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, URSS, M., 2004, 480 pp.
[20] Ismail-Zadeh A., Tackley P., Computational methods for geodynamics, Cambridge Univ. Press, Cambridge, 2010, 313 pp. | MR
[21] Vasilev F.P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.
[22] Nocedal J., Wright S.J., Numerical optimization, Springer, NY, 1999, 664 pp. | MR | Zbl
[23] Ismail-Zadeh A., Korotkii A., Tsepelev I., Data-driven numerical modelling in geodynamics: Methods and applications, Springer Intern. Publ., Berlin, 2016, 105 pp. | DOI | MR
[24] Korotkii A., Kovtunov D., Ismail-Zadeh A., Tsepelev I., Melnik O., “Quantitative reconstruction of thermal and dynamic characteristics of volcanic lava from surface thermal measurements”, Geophysical J. Intern., 205:3 (2016), 1767–1779 | DOI
[25] Korotkii A.I., “Obratnye zadachi o vosstanovlenii parametrov sistemy Nave–Stoksa”, Sovremennaya matematika i ee prilozheniya, 26, Nelineinaya dinamika, 2005, 54–77
[26] Tsepelev I., Ismail-Zadeh A., Melnik O., “Lava dome morphology inferred from numerical modelling”, Geoph. J. Intern., 223:3 (2020), 1597–1609 | DOI
[27] Kaltenbacher B., Neubauer A., Scherzer O., Iterative regularization methods for nonlinear ill-posed problems, v. 6, Walter de Gruyter, Berlin, 2008, 202 pp. | MR
[28] Wolfe P., “Convergence conditions for ascent methods II: Some corrections”, SIAM Review, 13 (1971), 185–188 | DOI | MR | Zbl
[29] Gilbert J.Ch., Nocedal J., “Global convergence properties of conjugate gradient methods for optimization”, SIAM J. Optimization, 2:1 (1992), 21–42 | DOI | MR | Zbl
[30] Sea Zh., Optimizatsiya. Teoriya i algoritmy, Mir, M., 1973, 244 pp.