Approximation of the Normal to the Discontinuity Lines of a Noisy Function
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 7-23
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The work is devoted to the construction of regularizing algorithms for solving the ill-posed problem of determining the normal and the position of the discontinuity lines of a function of two variables. It is assumed that the function is smooth outside the discontinuity lines and has a discontinuity of the first kind at each point on the line. The case is considered when the exact function is unknown, and, instead of it, at each node of a uniform grid with step $\tau$, the mean values of the perturbed function on a square with side $\tau$ are known. The perturbed function approximates the exact function in the space $L_2(\mathbb{R}^2)$, and the perturbation level $\delta$ is assumed to be known. Previously, the authors investigated (obtained accuracy estimates for) global discrete regularizing algorithms for approximating the set of discontinuity lines of a noisy function. The idea of averaging the original disturbed data over both variables is used to suppress noise when constructing the algorithms. In this work, methods are constructed that allow finding a set of pairs (grid point and vector): the grid point approximates the discontinuity line of the exact function, and the corresponding vector approximates the normal to the discontinuity line. These algorithms are investigated for the special case where the discontinuity lines are polygonal. Estimates of the accuracy of approximation of discontinuity lines and normals are obtained.
Keywords: ill-posed problem, regularization method, discontinuity lines, global localization, separability threshold, normal.
@article{TIMM_2022_28_2_a0,
     author = {A. L. Ageev and T. V. Antonova},
     title = {Approximation of the {Normal} to the {Discontinuity} {Lines} of a {Noisy} {Function}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {7--23},
     year = {2022},
     volume = {28},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a0/}
}
TY  - JOUR
AU  - A. L. Ageev
AU  - T. V. Antonova
TI  - Approximation of the Normal to the Discontinuity Lines of a Noisy Function
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 7
EP  - 23
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a0/
LA  - ru
ID  - TIMM_2022_28_2_a0
ER  - 
%0 Journal Article
%A A. L. Ageev
%A T. V. Antonova
%T Approximation of the Normal to the Discontinuity Lines of a Noisy Function
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 7-23
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a0/
%G ru
%F TIMM_2022_28_2_a0
A. L. Ageev; T. V. Antonova. Approximation of the Normal to the Discontinuity Lines of a Noisy Function. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 2, pp. 7-23. http://geodesic.mathdoc.fr/item/TIMM_2022_28_2_a0/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp.

[2] Vasin V. V., Ageev A. L., Ill-posed problems with a priori information, VSP, Utrecht, 1995, 255 pp. | MR | Zbl

[3] Canny J., “A computational approach to edge detection”, IEEE Trans. Pattern Anal. Machine Intell., PAMI-8:6 (1986), 679–698 | DOI

[4] Malla S., Veivlety v obrabotke signalov, Mir, M., 2005, 671 pp.

[5] Gonsales R., Vuds R., Tsifrovaya obrabotka izobrazhenii, Izd. 3-e ispr. i dopol., Tekhnosfera, M., 2012, 1104 pp.

[6] Mafi M., Rajaei H., Cabrerizo M., Adjouadi M., “A robust edge detection approach un the presence of high impulse noise intensity through switching adaptive median and fixed weighted mean filtering”, IEEE Trans. Image Process., 27:11 (2018), 5475–5489 | DOI | MR

[7] Mozerov M., van de Weijer J., “Improved recursive geodesic distance computation for edge preserving filter”, IEEE Trans. Image Process., 26:8 (2017), 3696–3706 | DOI | MR | Zbl

[8] Ageev A.L., Antonova T.V., “Approksimatsiya linii razryva zashumlennoi funktsii dvukh peremennykh”, Sib. zhurn. industr. matematiki, 15:1(49) (2012), 3–13 | Zbl

[9] Ageev A.L., Antonova T.V., “K voprosu o globalnoi lokalizatsii linii razryva funktsii dvukh peremennykh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:2 (2018), 12–23 | MR

[10] Ageev A.L., Antonova T.V., “New methods for the localization of discontinuities of the first kind for functions of bounded variation”, J. Inverse Ill-Posed Probl., 21:2 (2013), 177–191 | DOI | MR | Zbl

[11] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v 3 t., v. 1, 8-e izd., Fizmatlit, M., 2003, 680 pp.

[12] Makarov B.M., Podkorytov A.N., Lektsii po veschestvennomu analizu, BKhV-Peterburg, SPb., 2011, 688 pp. | MR