On finite 4-primary groups having a disconnected Gruenberg-Kegel graph and a composition factor isomorphic to $L_3(17)$ or $Sp_4(4)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 139-155 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Gruenberg–Kegel graph (the prime graph) $\Gamma(G)$ of a finite group $G$ is the graph in which the vertices are the prime divisors of the order of $G$ and two distinct vertices $p$ and $q$ are adjacent if and only if $G$ contains an element of order $pq$. Investigations of finite groups by the properties of their Gruenberg–Kegel graphs form a dynamically developing branch of the finite group theory. A detailed study of the class of finite groups with disconnected Gruenberg–Kegel graphs is one of the important problems in this direction. In 2010–2011, the first and the third authors described the normal structure of finite 3-primary and 4-primary groups with disconnected Gruenberg–Kegel graphs. Unfortunately, the case where a 4-primary group has a composition factor isomorphic to $L_3(17)$ or $Sp_4(4)$ has been omitted in this description. In the present paper, we obtain a description of the groups under consideration in the omitted case. Now a description of the normal structure of finite 4-primary groups with disconnected Gruenberg–Kegel graphs is corrected. In the course of the proof, the 2-modular decomposition matrix of the group $L_3(17)$ is calculated (up to two parameters every of which takes value 1 or 2).
Keywords: finite group, non-solvable $4$-primary group, chief factor, disconnected Gruenberg–Kegel graph, character, Brauer character
Mots-clés : algebraic group, decomposition matrix.
@article{TIMM_2022_28_1_a8,
     author = {A. S. Kondrat'ev and I. D. Suprunenko and I. V. Khramtsov},
     title = {On finite 4-primary groups having a disconnected {Gruenberg-Kegel} graph and a composition factor isomorphic to $L_3(17)$ or $Sp_4(4)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {139--155},
     year = {2022},
     volume = {28},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a8/}
}
TY  - JOUR
AU  - A. S. Kondrat'ev
AU  - I. D. Suprunenko
AU  - I. V. Khramtsov
TI  - On finite 4-primary groups having a disconnected Gruenberg-Kegel graph and a composition factor isomorphic to $L_3(17)$ or $Sp_4(4)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 139
EP  - 155
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a8/
LA  - ru
ID  - TIMM_2022_28_1_a8
ER  - 
%0 Journal Article
%A A. S. Kondrat'ev
%A I. D. Suprunenko
%A I. V. Khramtsov
%T On finite 4-primary groups having a disconnected Gruenberg-Kegel graph and a composition factor isomorphic to $L_3(17)$ or $Sp_4(4)$
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 139-155
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a8/
%G ru
%F TIMM_2022_28_1_a8
A. S. Kondrat'ev; I. D. Suprunenko; I. V. Khramtsov. On finite 4-primary groups having a disconnected Gruenberg-Kegel graph and a composition factor isomorphic to $L_3(17)$ or $Sp_4(4)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 139-155. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a8/

[1] Belonogov V.A., Predstavleniya i kharaktery v teorii konechnykh grupp, Izd-vo UrO AN SSSR, Sverdlovsk, 1990, 380 pp.

[2] Burbaki N., Gruppy i algebry Li, Gl. IV-VI, Mir, M., 1972, 334 pp. | MR

[3] Burbaki N., Gruppy i algebry Li, gl. VII-VIII, Mir, M., 1978, 342 pp. | MR

[4] Kondratev A.S., “O komponentakh grafa prostykh chisel konechnykh prostykh grupp”, Mat. sb., 180:6 (1989), 787–797

[5] Kondratev A.S., Khramtsov I.V., “O konechnykh triprimarnykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:3 (2010), 150–158

[6] Kondratev A.S., Khramtsov I.V., “O konechnykh chetyreprimarnykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:4 (2011), 142–159

[7] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969, 668 pp. | MR

[8] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975, 262 pp.

[9] I.D. Suprunenko, “Sokhranenie sistem vesov neprivodimykh predstavlenii algebraicheskoi gruppy i algebry Li tipa $A_l$ s ogranichennymi starshimi vesami pri reduktsii po modulyu $p$”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, 1983, no. 2, 18–22 | MR | Zbl

[10] Arad Z., W. Herford W., “Classification of finite groups with a CC-subgroup”, Comm. Algebr., 32:6 (2004), 2087–2098 | MR | Zbl

[11] J.H. Conway [et. al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[12] C. Jansen [et. al.], An atlas of Brauer characters, Clarendon Press, Oxford, 1995, 327 pp. | Zbl

[13] Baranov A.A., Osinovskaya A.A., Suprunenko I.D., “Modular representations of the special linear groups with small weight multiplicities”, J. Algebra, 397 (2014), 225–251 | MR | Zbl

[14] Bray J.N., Holt D.F., Roney-Dougal C.M., The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lect. Note Ser., 407, Cambridge University Press, Cambridge, 2013, 438 pp. | MR | Zbl

[15] Craven D.A., Representation theory of finite groups: a guidebook, Universitext, Springer, Cham, 2019, 294 pp. | MR | Zbl

[16] Dipper R., “On the decomposition matrices of the finite general linear groups II”, Trans. Amer. Math. Soc., 292:1 (1985), 123–133 | MR | Zbl

[17] Dornhoff L., Group representation theory. Pt. B: modular representation theory, Marcell Dekker, NY, 1972, 256 pp. | MR

[18] The GAP Group, GAP - Groups, Algorithms, and Programming, Ver. 4.11.1.2021 URL: http://www.gap-system.org

[19] Huppert B., Endliche Gruppen I, Springer, Berlin etc., 1967, 453 pp. | MR | Zbl

[20] Huppert B., Blackburn N., Finite groups II, Springer-Verlag, Berlin, 1982, 531 pp. | MR | Zbl

[21] Iiyori N., Yamaki H., “Prime graph components of the simple groups of Lie type over the fields of even characteristic”, J. Algebra, 155:2 (1993), 335–343 ; Corrigenda, J. Algebra, 181:2 (1996), 659 | MR | Zbl | MR | Zbl

[22] Jantzen J.C., Representations of algebraic groups, Second Edition, Amer. Math. Soc., Providence, RI, 2003, 576 pp. | MR

[23] Lucido M.S., “Prime graph components of finite almost simple groups”, Rend. Sem. Mat. Univ. Padova, 102 (1999), 1–22 ; addendum, Rend. Sem. Mat. Univ. Padova, 107 (2002), 189–190 | MR | Zbl | MR | Zbl

[24] Mortimer B., “The modular permutation representations of the known doubly transitive groups”, Proc. London Math. Soc. (3), 41:1 (1980), 1–20 | MR | Zbl

[25] Simpson W., Frame J.S., “The character tables for $SL(3,q)$, $SU(3,q^2)$, $PSL(3,q)$, $PSU(3,q^2)$”, Canad. J. Math., 25:3 (1973), 486–494 | MR | Zbl

[26] R. Steinberg, “Representations of algebraic groups”, Nagoya Math. J., 22 (1963), 33–56 | MR | Zbl

[27] Williams J.S., “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | MR | Zbl