Mots-clés : algebraic group, decomposition matrix.
@article{TIMM_2022_28_1_a8,
author = {A. S. Kondrat'ev and I. D. Suprunenko and I. V. Khramtsov},
title = {On finite 4-primary groups having a disconnected {Gruenberg-Kegel} graph and a composition factor isomorphic to $L_3(17)$ or $Sp_4(4)$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {139--155},
year = {2022},
volume = {28},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a8/}
}
TY - JOUR AU - A. S. Kondrat'ev AU - I. D. Suprunenko AU - I. V. Khramtsov TI - On finite 4-primary groups having a disconnected Gruenberg-Kegel graph and a composition factor isomorphic to $L_3(17)$ or $Sp_4(4)$ JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 139 EP - 155 VL - 28 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a8/ LA - ru ID - TIMM_2022_28_1_a8 ER -
%0 Journal Article %A A. S. Kondrat'ev %A I. D. Suprunenko %A I. V. Khramtsov %T On finite 4-primary groups having a disconnected Gruenberg-Kegel graph and a composition factor isomorphic to $L_3(17)$ or $Sp_4(4)$ %J Trudy Instituta matematiki i mehaniki %D 2022 %P 139-155 %V 28 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a8/ %G ru %F TIMM_2022_28_1_a8
A. S. Kondrat'ev; I. D. Suprunenko; I. V. Khramtsov. On finite 4-primary groups having a disconnected Gruenberg-Kegel graph and a composition factor isomorphic to $L_3(17)$ or $Sp_4(4)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 139-155. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a8/
[1] Belonogov V.A., Predstavleniya i kharaktery v teorii konechnykh grupp, Izd-vo UrO AN SSSR, Sverdlovsk, 1990, 380 pp.
[2] Burbaki N., Gruppy i algebry Li, Gl. IV-VI, Mir, M., 1972, 334 pp. | MR
[3] Burbaki N., Gruppy i algebry Li, gl. VII-VIII, Mir, M., 1978, 342 pp. | MR
[4] Kondratev A.S., “O komponentakh grafa prostykh chisel konechnykh prostykh grupp”, Mat. sb., 180:6 (1989), 787–797
[5] Kondratev A.S., Khramtsov I.V., “O konechnykh triprimarnykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:3 (2010), 150–158
[6] Kondratev A.S., Khramtsov I.V., “O konechnykh chetyreprimarnykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:4 (2011), 142–159
[7] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969, 668 pp. | MR
[8] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975, 262 pp.
[9] I.D. Suprunenko, “Sokhranenie sistem vesov neprivodimykh predstavlenii algebraicheskoi gruppy i algebry Li tipa $A_l$ s ogranichennymi starshimi vesami pri reduktsii po modulyu $p$”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, 1983, no. 2, 18–22 | MR | Zbl
[10] Arad Z., W. Herford W., “Classification of finite groups with a CC-subgroup”, Comm. Algebr., 32:6 (2004), 2087–2098 | MR | Zbl
[11] J.H. Conway [et. al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl
[12] C. Jansen [et. al.], An atlas of Brauer characters, Clarendon Press, Oxford, 1995, 327 pp. | Zbl
[13] Baranov A.A., Osinovskaya A.A., Suprunenko I.D., “Modular representations of the special linear groups with small weight multiplicities”, J. Algebra, 397 (2014), 225–251 | MR | Zbl
[14] Bray J.N., Holt D.F., Roney-Dougal C.M., The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lect. Note Ser., 407, Cambridge University Press, Cambridge, 2013, 438 pp. | MR | Zbl
[15] Craven D.A., Representation theory of finite groups: a guidebook, Universitext, Springer, Cham, 2019, 294 pp. | MR | Zbl
[16] Dipper R., “On the decomposition matrices of the finite general linear groups II”, Trans. Amer. Math. Soc., 292:1 (1985), 123–133 | MR | Zbl
[17] Dornhoff L., Group representation theory. Pt. B: modular representation theory, Marcell Dekker, NY, 1972, 256 pp. | MR
[18] The GAP Group, GAP - Groups, Algorithms, and Programming, Ver. 4.11.1.2021 URL: http://www.gap-system.org
[19] Huppert B., Endliche Gruppen I, Springer, Berlin etc., 1967, 453 pp. | MR | Zbl
[20] Huppert B., Blackburn N., Finite groups II, Springer-Verlag, Berlin, 1982, 531 pp. | MR | Zbl
[21] Iiyori N., Yamaki H., “Prime graph components of the simple groups of Lie type over the fields of even characteristic”, J. Algebra, 155:2 (1993), 335–343 ; Corrigenda, J. Algebra, 181:2 (1996), 659 | MR | Zbl | MR | Zbl
[22] Jantzen J.C., Representations of algebraic groups, Second Edition, Amer. Math. Soc., Providence, RI, 2003, 576 pp. | MR
[23] Lucido M.S., “Prime graph components of finite almost simple groups”, Rend. Sem. Mat. Univ. Padova, 102 (1999), 1–22 ; addendum, Rend. Sem. Mat. Univ. Padova, 107 (2002), 189–190 | MR | Zbl | MR | Zbl
[24] Mortimer B., “The modular permutation representations of the known doubly transitive groups”, Proc. London Math. Soc. (3), 41:1 (1980), 1–20 | MR | Zbl
[25] Simpson W., Frame J.S., “The character tables for $SL(3,q)$, $SU(3,q^2)$, $PSL(3,q)$, $PSU(3,q^2)$”, Canad. J. Math., 25:3 (1973), 486–494 | MR | Zbl
[26] R. Steinberg, “Representations of algebraic groups”, Nagoya Math. J., 22 (1963), 33–56 | MR | Zbl
[27] Williams J.S., “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | MR | Zbl