On Borwein's identity and weighted Tur\'an type inequalities on a closed interval
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 127-138
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\Pi_n^*$ be the class of algebraic polynomials $P$ of degree $n$ having all zeros on the interval $[-1,1]$ and vanishing at the points $1$ and $-1$. In addition, let $w(x)=1-x^2$. The main result of the paper can be formulated as follows: there is an absolute constant $A>0$ such that $$ \|P'w^{1-s}\|_{C[-1,1]}>A\sqrt{n}\cdot \sqrt{1-\Delta_P^2}\,\|Pw^{-s}\|_{C[-1,1]} $$ for any $P\in \Pi_n^*$ and $s\in [0,1]$, where $\Delta_P=\inf\big\{d\ge 0\colon \|Pw^{-s}\|_{C[-d,d]}=\|Pw^{-s}\|_{C[-1,1]}\big\}$. This inequality may be interpreted as a weighted analog of P. Turán's classical inequality for the derivative of polynomials with zeros on a closed interval. The proof uses a generalization of an interesting formula of P. Borwein concerning the logarithmic derivative of such polynomials. Our estimate is sharp in the order of the quantity $n$ and complements well-known results of V. F. Babenko, S. A. Pichugov, S. P. Zhou, and others.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
logarithmic derivative of a polynomial, weighted Turán inequality.
                    
                  
                
                
                @article{TIMM_2022_28_1_a7,
     author = {M. A. Komarov},
     title = {On {Borwein's} identity and weighted {Tur\'an} type inequalities on a closed interval},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {127--138},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a7/}
}
                      
                      
                    TY - JOUR AU - M. A. Komarov TI - On Borwein's identity and weighted Tur\'an type inequalities on a closed interval JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 127 EP - 138 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a7/ LA - ru ID - TIMM_2022_28_1_a7 ER -
M. A. Komarov. On Borwein's identity and weighted Tur\'an type inequalities on a closed interval. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 127-138. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a7/
