On Borwein's identity and weighted Turán type inequalities on a closed interval
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 127-138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\Pi_n^*$ be the class of algebraic polynomials $P$ of degree $n$ having all zeros on the interval $[-1,1]$ and vanishing at the points $1$ and $-1$. In addition, let $w(x)=1-x^2$. The main result of the paper can be formulated as follows: there is an absolute constant $A>0$ such that $$ \|P'w^{1-s}\|_{C[-1,1]}>A\sqrt{n}\cdot \sqrt{1-\Delta_P^2}\,\|Pw^{-s}\|_{C[-1,1]} $$ for any $P\in \Pi_n^*$ and $s\in [0,1]$, where $\Delta_P=\inf\big\{d\ge 0\colon \|Pw^{-s}\|_{C[-d,d]}=\|Pw^{-s}\|_{C[-1,1]}\big\}$. This inequality may be interpreted as a weighted analog of P. Turán's classical inequality for the derivative of polynomials with zeros on a closed interval. The proof uses a generalization of an interesting formula of P. Borwein concerning the logarithmic derivative of such polynomials. Our estimate is sharp in the order of the quantity $n$ and complements well-known results of V. F. Babenko, S. A. Pichugov, S. P. Zhou, and others.
Keywords: logarithmic derivative of a polynomial, weighted Turán inequality.
@article{TIMM_2022_28_1_a7,
     author = {M. A. Komarov},
     title = {On {Borwein's} identity and weighted {Tur\'an} type inequalities on a closed interval},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {127--138},
     year = {2022},
     volume = {28},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a7/}
}
TY  - JOUR
AU  - M. A. Komarov
TI  - On Borwein's identity and weighted Turán type inequalities on a closed interval
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 127
EP  - 138
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a7/
LA  - ru
ID  - TIMM_2022_28_1_a7
ER  - 
%0 Journal Article
%A M. A. Komarov
%T On Borwein's identity and weighted Turán type inequalities on a closed interval
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 127-138
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a7/
%G ru
%F TIMM_2022_28_1_a7
M. A. Komarov. On Borwein's identity and weighted Turán type inequalities on a closed interval. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 127-138. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a7/

[1] Borwein P., “The size of $\{x: r_n'/r_n\ge 1\}$ and lower bounds for $\|e^{-x}-r_n\|$”, J. Approx. Theory, 36:1 (1982), 73–80 | DOI | MR | Zbl

[2] Macintyre A.J., Fuchs W.H.J., “Inequalities for the logarithmic derivatives of a polynomial”, J. London Math. Soc., 15:2 (1940), 162–168 | DOI | MR

[3] Komarov M.A., “Distribution of the logarithmic derivative of a rational function on the line”, Acta Math. Hungar., 163:2 (2021), 623–639 | DOI | MR | Zbl

[4] Govorov N.V., Lapenko Yu.P., “Otsenki snizu modulya logarifmicheskoi proizvodnoi mnogochlena”, Mat. zametki, 23:4 (1978), 527–535 | MR | Zbl

[5] Komarov M.A., “Reverse Markov inequality on the unit interval for polynomials whose zeros lie in the upper unit half-disk”, Analysis Math., 45:4 (2019), 817–821 | DOI | MR | Zbl

[6] Komarov M.A., “The Turan-type inequality in the space $L_0$ on the unit interval”, Analysis Math., 47:4 (2021), 843–852 | DOI | MR | Zbl

[7] Turan P., “Uber die Ableitung von Polynomen”, Compos. Math., 7 (1939), 89–95 URL: https://eudml.org/doc/88754 | MR

[8] Varma A.K., “An analogue of some inequalities of P. Turan concerning algebraic polynomials having all zeros inside $[-1,+1]$”, Proc. Amer. Math. Soc., 55:2 (1976), 305–309 | DOI | MR | Zbl

[9] Zhou S.P., “An extension of the Turan inequality in $L_p$-space for $0 p 1$”, J. Math. Res. Expos., 6:2 (1986), 27–30 | DOI | MR

[10] Glazyrina P.Yu., “Neravenstvo bratev Markovykh v prostranstve $L_0$ na otrezke”, Mat. zametki, 78:1 (2005), 59–65 | DOI | MR | Zbl

[11] Erdelyi T., “Turan-type reverse Markov inequalities for polynomials with restricted zeros”, Constr. Approx., 54:1 (2021), 35–48 | DOI | MR | Zbl

[12] Babenko V.F., Pichugov S.A., “Tochnoe neravenstvo dlya proizvodnoi trigonometricheskogo polinoma, imeyuschego tolko veschestvennye nuli”, Mat. zametki, 39:3 (1986), 330–336 | MR | Zbl

[13] Xiao W., Zhou S.P., “On weighted Turan type inequality”, Glas. Math. Ser. III, 34(54):2 (1999), 197–202 URL: https://web.math.pmf.unizg.hr/glasnik/vol_34/no2_07.html | MR | Zbl

[14] Yu D., Wei B., “On Turan type inequality with doubling weights and $A^*$ weights”, J. Zhejiang Univ. Sci. A, 6:7 (2005), 764–768 | DOI

[15] Underhill B., Varma A.K., “An extension of some inequalities of P. Erdos and P. Turan concerning algebraic polynomials”, Acta Math. Hungar., 73:1–2 (1996), 1–28 | DOI | MR | Zbl

[16] Wang J.L., Zhou S.P., “The weighted Turan type inequality for generalized Jacobi weights”, Bull. Aust. Math. Soc., 66:2 (2002), 259–265 | DOI | MR | Zbl

[17] Glazyrina P.Yu., Reves S.D., “Neravenstva Turana - Ereda, obratnye k neravenstvu Markova, dlya $L^q$-normy po granitse ploskoi vypukloi oblasti”, Tr. MIAN, 303 (2018), 87–115 | DOI | Zbl

[18] Baran M., “Markov inequality on sets with polynomial parametrization”, Ann. Polon. Math., 60:1 (1994), 69–79 | DOI | MR | Zbl