@article{TIMM_2022_28_1_a6,
author = {L. A. Kalyakin},
title = {Asymptotics of a dynamic saddle-node bifurcation for the nuclear spin model in an antiferromagnet},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {111--126},
year = {2022},
volume = {28},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a6/}
}
TY - JOUR AU - L. A. Kalyakin TI - Asymptotics of a dynamic saddle-node bifurcation for the nuclear spin model in an antiferromagnet JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 111 EP - 126 VL - 28 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a6/ LA - ru ID - TIMM_2022_28_1_a6 ER -
L. A. Kalyakin. Asymptotics of a dynamic saddle-node bifurcation for the nuclear spin model in an antiferromagnet. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 111-126. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a6/
[1] Borich M.A., Bunkov Yu.M., Kurkin M.I., Tankeev A.P., “Yadernaya magnitnaya relaksatsiya, navedennaya relaksatsiei elektronnykh spinov”, Pisma v ZhETF, 105:1 (2017), 23–27 | DOI
[2] Kalyakin L.A., “Analysis of a mathematical model for nuclear spins in an antiferromagnet”, Russian J. Nonlinear Dynamics, 14:2 (2018), 217–234 | DOI | MR | Zbl
[3] Kalyakin L.A., “Asimptotika resheniya sistemy uravnenii Landau - Lifshitsa pri dinamicheskoi bifurkatsii sedlo-uzel”, Algebra i analiz, 33:2 (2021), 56–81
[4] Kalyakin L. A., “Asimptotika resheniya differentsialnogo uravneniya pri dinamicheskoi bifurkatsii tipa sedlo-uzel”, Zhurn. vychisl. matematiki i mat. fiziki, 59:9 (2019), 59–74 | DOI
[5] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990, 207 pp.
[6] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR
[7] Berglund N., Dynamic bifurcations: hysteresis, scaling laws and feedback control, 1999, 12 pp., arXiv: 9912008 | MR
[8] Kiselev O.M., “Hard Loss of Stability in Painleve-2 Equation”, J. Nonlinear Math. Phys., 8:1 (2001), 65–95 | DOI | MR | Zbl
[9] Diminnie D.C., Haberman R., “Slow passage through homoclinic orbits for the unfolding of a saddle-center bifurcation and the change in the adiabatic invariant”, Physica D., 162:1–2 (2002), 34–52 | DOI | MR | Zbl
[10] Suleimanov B. I., “Nekotorye tipichnye osobennosti dvizheniya s tormozheniem v sluchae plavnoi neodnorodnosti”, Doklady AN, 407:4 (2006), 460–462 | MR | Zbl
[11] Butuzov V.F., “O kontrastnykh strukturakh s mnogozonnym vnutrennim sloem”, Modelirovanie i analiz inform. sistem, 24:3 (2017), 288–308 | DOI | MR
[12] Mischenko E.F., Kolesov Yu.S., Kolesov A.Yu., Rozov N.Kh., Periodicheskie dvizheniya i bifurkatsionnye protsessy v singulyarno vozmuschennykh sistemakh, Nauka, M., 1995, 336 pp. | MR
[13] Lebovitz N.R. and Schaar R.J., “Exchange of stabilities in autonomous systems”, Stud. Appl. Math., 54:3 (1975), 229–260 | DOI | MR | Zbl
[14] Lebovitz N.R. and Schaar R.J., “Exchange of stabilities in autonomous systems-II. Vertical bifurcation”, Stud. Appl. Math., 56 (1977), 1–50 | DOI | MR | Zbl
[15] Bautin N.N., Leontovich E.A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1990, 488 pp.
[16] Orlov V. N., “Kriterii suschestvovaniya podvizhnykh osobykh tochek reshenii differentsialnogo uravneniya Rikkati”, Vestn. SamGU. Estestvennonauchnaya seriya, 2006, no. 6/1(46), 64–69 | Zbl
[17] Neishtadt A. I., “O zatyagivanii poteri ustoichivosti pri dinamicheskikh bifurkatsiyakh”, Differents. uravneniya, 24:2 (1988), 226–233 | MR | Zbl
[18] Baer S. M., Erneux T., and. Rinzel J., “The slow passage through a Hopf bifurcation: Delay, memory effects, and resonance”, SIAM J. Appl. Math., 49:1 (1989), 55–71 | DOI | MR | Zbl