Asymptotics of a dynamic saddle-node bifurcation for the nuclear spin model in an antiferromagnet
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 111-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A system of two nonlinear differential equations with slowly varying coefficients is considered. The system corresponds to one of the models of nuclear spins in antiferromagnets. When written in slow time, the equations contain a small parameter at the derivatives. In the leading terms of the asymptotics with respect to the small parameter, the problem is reduced to a system of algebraic equations. Their roots depend on the slow time. We study solutions whose asymptotics is restructured from one root to another. Such restructuring occurs under a suitable change in the coefficients of the original equations and is identified with a dynamic saddle-node bifurcation. A narrow transition layer appears near the moment of transition (bifurcation), where the solution changes rapidly. The main results are related to the construction of the asymptotics with respect to the small parameter in this layer. To construct the asymptotics, the matching method using three scales is used.
Keywords: equilibrium, dynamic bifurcation, small parameter, asymptotics.
@article{TIMM_2022_28_1_a6,
     author = {L. A. Kalyakin},
     title = {Asymptotics of a dynamic saddle-node bifurcation for the nuclear spin model in an antiferromagnet},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {111--126},
     year = {2022},
     volume = {28},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a6/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Asymptotics of a dynamic saddle-node bifurcation for the nuclear spin model in an antiferromagnet
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 111
EP  - 126
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a6/
LA  - ru
ID  - TIMM_2022_28_1_a6
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Asymptotics of a dynamic saddle-node bifurcation for the nuclear spin model in an antiferromagnet
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 111-126
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a6/
%G ru
%F TIMM_2022_28_1_a6
L. A. Kalyakin. Asymptotics of a dynamic saddle-node bifurcation for the nuclear spin model in an antiferromagnet. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 111-126. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a6/

[1] Borich M.A., Bunkov Yu.M., Kurkin M.I., Tankeev A.P., “Yadernaya magnitnaya relaksatsiya, navedennaya relaksatsiei elektronnykh spinov”, Pisma v ZhETF, 105:1 (2017), 23–27 | DOI

[2] Kalyakin L.A., “Analysis of a mathematical model for nuclear spins in an antiferromagnet”, Russian J. Nonlinear Dynamics, 14:2 (2018), 217–234 | DOI | MR | Zbl

[3] Kalyakin L.A., “Asimptotika resheniya sistemy uravnenii Landau - Lifshitsa pri dinamicheskoi bifurkatsii sedlo-uzel”, Algebra i analiz, 33:2 (2021), 56–81

[4] Kalyakin L. A., “Asimptotika resheniya differentsialnogo uravneniya pri dinamicheskoi bifurkatsii tipa sedlo-uzel”, Zhurn. vychisl. matematiki i mat. fiziki, 59:9 (2019), 59–74 | DOI

[5] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990, 207 pp.

[6] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[7] Berglund N., Dynamic bifurcations: hysteresis, scaling laws and feedback control, 1999, 12 pp., arXiv: 9912008 | MR

[8] Kiselev O.M., “Hard Loss of Stability in Painleve-2 Equation”, J. Nonlinear Math. Phys., 8:1 (2001), 65–95 | DOI | MR | Zbl

[9] Diminnie D.C., Haberman R., “Slow passage through homoclinic orbits for the unfolding of a saddle-center bifurcation and the change in the adiabatic invariant”, Physica D., 162:1–2 (2002), 34–52 | DOI | MR | Zbl

[10] Suleimanov B. I., “Nekotorye tipichnye osobennosti dvizheniya s tormozheniem v sluchae plavnoi neodnorodnosti”, Doklady AN, 407:4 (2006), 460–462 | MR | Zbl

[11] Butuzov V.F., “O kontrastnykh strukturakh s mnogozonnym vnutrennim sloem”, Modelirovanie i analiz inform. sistem, 24:3 (2017), 288–308 | DOI | MR

[12] Mischenko E.F., Kolesov Yu.S., Kolesov A.Yu., Rozov N.Kh., Periodicheskie dvizheniya i bifurkatsionnye protsessy v singulyarno vozmuschennykh sistemakh, Nauka, M., 1995, 336 pp. | MR

[13] Lebovitz N.R. and Schaar R.J., “Exchange of stabilities in autonomous systems”, Stud. Appl. Math., 54:3 (1975), 229–260 | DOI | MR | Zbl

[14] Lebovitz N.R. and Schaar R.J., “Exchange of stabilities in autonomous systems-II. Vertical bifurcation”, Stud. Appl. Math., 56 (1977), 1–50 | DOI | MR | Zbl

[15] Bautin N.N., Leontovich E.A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1990, 488 pp.

[16] Orlov V. N., “Kriterii suschestvovaniya podvizhnykh osobykh tochek reshenii differentsialnogo uravneniya Rikkati”, Vestn. SamGU. Estestvennonauchnaya seriya, 2006, no. 6/1(46), 64–69 | Zbl

[17] Neishtadt A. I., “O zatyagivanii poteri ustoichivosti pri dinamicheskikh bifurkatsiyakh”, Differents. uravneniya, 24:2 (1988), 226–233 | MR | Zbl

[18] Baer S. M., Erneux T., and. Rinzel J., “The slow passage through a Hopf bifurcation: Delay, memory effects, and resonance”, SIAM J. Appl. Math., 49:1 (1989), 55–71 | DOI | MR | Zbl