Regularization analysis of a degenerate problem of impulsive stabilization for a system with time delay
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 74-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A degenerate problem of stabilizing a linear autonomous system of differential equations with time delay and impulse controls is considered. A nondegenerate criterion for the quality of transient processes, close to a degenerate one, is used for its regularization. The regularized stabilization problem for impulse controls is replaced by an auxiliary non-degenerate optimal stabilization problem for non-impulse controls containing time delay. Bellman's dynamic programming principle is used to solve the auxiliary problem. When finding the governing system of equations for the coefficients of the quadratic Bellman functional, the formulation of the optimal stabilization problem in the functional spaces of states and controls is used. A representation is obtained for the impulse of the optimal stabilizing control. The difficult problem of finding a solution to the governing system of equations for the Bellman functional is replaced by the problem of finding a solution to the governing system of equations for the coefficients of the representation of the optimal stabilizing control. The latter problem has a lower dimension. The asymptotic dependence of the optimal stabilizing control on the regularization parameter is found when the dimension of the control vector coincides with the dimension of the state vector.
Keywords: linear autonomous system, time delay, optimal stabilization, impulse control.
@article{TIMM_2022_28_1_a4,
     author = {Yu. F. Dolgii and A. N. Sesekin},
     title = {Regularization analysis of a degenerate problem of impulsive stabilization for a system with time delay},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {74--95},
     year = {2022},
     volume = {28},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a4/}
}
TY  - JOUR
AU  - Yu. F. Dolgii
AU  - A. N. Sesekin
TI  - Regularization analysis of a degenerate problem of impulsive stabilization for a system with time delay
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 74
EP  - 95
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a4/
LA  - ru
ID  - TIMM_2022_28_1_a4
ER  - 
%0 Journal Article
%A Yu. F. Dolgii
%A A. N. Sesekin
%T Regularization analysis of a degenerate problem of impulsive stabilization for a system with time delay
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 74-95
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a4/
%G ru
%F TIMM_2022_28_1_a4
Yu. F. Dolgii; A. N. Sesekin. Regularization analysis of a degenerate problem of impulsive stabilization for a system with time delay. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 74-95. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a4/

[1] Krasovskii N.N., “Ob analiticheskom konstruirovanii optimalnogo regulyatora v sisteme s zapazdyvaniyami vremeni”, Prikl. matematika i mekhanika, 26:1 (1962), 39–51 | MR | Zbl

[2] Delfour M.C., McCalla C., Mitter S.K., “Stability and the infinite-time quadratic cost problem for linear hereditary differential systems”, SIAM J. Control, 13:1 (1975), 48–88 | DOI | MR | Zbl

[3] Gibson J.S., “Linear-quadratic optimal control of hereditary differential systems: infinite dimensional Riccati equations and numerical approximations”, SIAM J. Control Optim., 21:5 (1983), 95–135 | DOI | MR

[4] Andreeva E.A., Kolmanovskii V.B., Shaikhet L.E., Upravlenie sistemami s posledeistviem, Nauka, M., 1992, 336 pp. | MR

[5] Dmitriev M.G., Kurina G.A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomatika i telemekhanika, 2006, no. 1, 3–53

[6] Andreeva I.Yu., Sesekin A.N., “Impulsnaya lineino-kvadratichnaya zadacha optimizatsii v sistemakh s posledeistviem”, Izv. vuzov. Matematika, 1995, no. 10, 10–14 | Zbl

[7] Zhelonkina N.I., Lozhnikov A.B., Sesekin A.N., “Ob optimalnoi stabilizatsii impulsnym upravleniem lineinykh sistem s posledeistviem”, Avtomatika i telemekhanika, 2013, no. 11, 39–48 | MR | Zbl

[8] Dolgii Yu.F., “K stabilizatsii lineinykh avtonomnykh sistem differentsialnykh uravnenii s raspredelennym zapazdyvaniem”, Avtomatika i telemekhanika, 2007, no. 10, 92–105 | Zbl

[9] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1977, 744 pp. | MR

[10] Egorov A.I., Uravneniya Rikkati, SOLON-Press, M., 2017, 448 pp.

[11] Ikramov Kh.D., Chislennoe reshenie matrichnykh uravnenii, Nauka, M., 1984, 192 pp. | MR

[12] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp.