Asymptotics of a solution to a time-optimal control problem with an unbounded target set in the critical case
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 58-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study a time-optimal control problem for a singularly perturbed linear autonomous system with smooth geometric constraints on the control in the form of a ball and an unbounded target set: $$ \left\{ \!\!\!\!\! \begin{array}{llll} \dot{x}=y,\,\ x,\,y\in \mathbb {R}^{2m},\quad u\in \mathbb {R}^{2m},\\[1ex] \varepsilon^2\dot{y}=Jy+u,\,\|u\|\leqslant 1,\quad 0\varepsilon\ll 1,\\[1ex] x(0)=x^0\neq 0,\quad y(0)=y^0,\\[1ex] x(T_\varepsilon)=0,\quad T_\varepsilon \longrightarrow \min, \end{array} \right. $$ where $ J=\displaystyle\left(\begin{array}{rr} 0 \\ 00\end{array}\right). $ The main difference of this case from the systems with fast and slow variables studied earlier is that here the matrix at the fast variables is a multidimensional analog of the second-order Jordan cell with zero eigenvalue, and thus does not satisfy the standard condition of asymptotic stability. The solvability of the problem is proved. The main system of equations for finding a solution is written. In the case $m=1$, we derive and justify a complete asymptotics in the sense of Poincaré with respect to the asymptotic sequence $\varepsilon^q\ln^p\varepsilon$, $q\in\mathbb {N}$, $q-1\ge p\in\mathbb {N}\cup\{0\}$, of the optimal time and of the vector generating the optimal control.
Keywords: optimal control, time-optimal control problem, unbounded target set, singularly perturbed problem, asymptotic expansion, small parameter.
@article{TIMM_2022_28_1_a3,
     author = {A. R. Danilin and O. O. Kovrizhnykh},
     title = {Asymptotics of a solution to a time-optimal control problem with an unbounded target set in the critical case},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {58--73},
     year = {2022},
     volume = {28},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a3/}
}
TY  - JOUR
AU  - A. R. Danilin
AU  - O. O. Kovrizhnykh
TI  - Asymptotics of a solution to a time-optimal control problem with an unbounded target set in the critical case
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 58
EP  - 73
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a3/
LA  - ru
ID  - TIMM_2022_28_1_a3
ER  - 
%0 Journal Article
%A A. R. Danilin
%A O. O. Kovrizhnykh
%T Asymptotics of a solution to a time-optimal control problem with an unbounded target set in the critical case
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 58-73
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a3/
%G ru
%F TIMM_2022_28_1_a3
A. R. Danilin; O. O. Kovrizhnykh. Asymptotics of a solution to a time-optimal control problem with an unbounded target set in the critical case. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 58-73. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a3/

[1] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[2] Krasovskii N.N., Teoriya upravleniya dvizheniem. Lineinye sistemy, Nauka, M., 1968, 476 pp.

[3] Dmitriev M.G., Kurina G.A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomatika i telemekhanika, 2006, no. 1, 3–51 | Zbl

[4] Zhang Y., Naidu D.S., Cai C., and Zou Y., “Singular perturbations and time scales in control theories and applications: an overview 2002-2012”, Inter. Journal of Informaton and Systems Sciences, 9:1 (2014), 1–36 | MR

[5] Kokotovic P.V., Haddad A.H., “Controllability and time-optimal control of systems with slow and fast modes”, IEEE Trans. Automat. Control, 20:1 (1975), 111–113 | DOI | MR | Zbl

[6] Donchev A., Sistemy optimalnogo upravleniya: Vozmuscheniya, priblizheniya i analiz chuvstvitelnosti, Mir, M., 1987, 156 pp.

[7] Donchev A.L., Veliev V.M., “Singular Perturbation in Mayer's Problem for Linear Systems”, SIAM J. Control Optim., 21:4 (1983), 566–581 | MR | Zbl

[8] Kurina G.A., Nguen T.Kh., “Asimptoticheskoe reshenie singulyarno vozmuschennykh lineino-kvadratichnykh zadach optimalnogo upravleniya s razryvnymi koeffitsientami”, Zhurn. vychisl. matematiki i mat. fiziki, 52:4 (2012), 628–652 | MR | Zbl

[9] Kurina G.A., Hoai N.T., “Projector approach for constructing the zero order asymptotic solution for the singularly perturbed linear-quadratic control problem in a critical case”, AIP Conference Proc., 1997 (2018), 020073 | DOI

[10] Nguyen T.H., “Asymptotic solution of a singularly perturbed optimal problem with integral constraint”, J. Optim. Theory Appl., 190:3 (2021), 931–950 | DOI | MR | Zbl

[11] Shaburov A.A., “Asimptoticheskoe razlozhenie resheniya singulyarno vozmuschennoi zadachi optimalnogo upravleniya s integralnym vypuklym kriteriem kachestva i gladkimi geometricheskimi ogranicheniyami na upravlenie”, Vest. Tambov. un-ta. Ser.: estestven. i tekhn. nauki, 24:125 (2019), 119–614 | DOI

[12] Vasileva A.B., Butuzov V.F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973, 272 pp. | MR

[13] Vasileva A.B., Butuzov V.F., Singulyarno vozmuschennye uravneniya v kriticheskikh sluchayakh, Izd-vo MGU, M., 1978, 106 pp.

[14] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.

[15] Danilin A.R., Kovrizhnykh O.O., “Asimptotika optimalnogo vremeni perevoda lineinoi upravlyaemoi sistemy s nulevymi veschestvennymi chastyami sobstvennykh znachenii matritsy pri bystrykh peremennykh na neogranichennoe tselevoe mnozhestvo”, Tr. In-ta matematiki i mekhaniki UrO RAN, 27:1 (2021), 48–61 | DOI | MR

[16] Danilin A.R., “Asimptotika optimalnogo znacheniya funktsionala kachestva pri bystrostabiliziruyuschemsya nepryamom upravlenii v singulyarnom sluchae”, Zhurn. vychisl. matematiki i mat. fiziki, 46:12 (2006), 2166–2177 | MR

[17] Ilin A.M., Danilin A.R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009, 248 pp.

[18] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka. Gl. red. fiz.-mat. lit., M., 1984, 752 pp. | MR