Taylor Series for Resolvents of Operators on Graphs with Small Edges
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 40-57
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a second-order elliptic self-adjoint operator on a graph with small edges. Such a graph is obtained by shrinking a given graph by a factor of $\varepsilon^{-1}$ and then gluing it to another fixed graph; here $\varepsilon$ is a small positive parameter. No significant constraints are imposed on this pair of graphs. On such a graph, a general second-order self-adjoint elliptic operator is specified; its differential expression contains derivatives of all orders with variable coefficients and a variable potential. The boundary conditions at the vertices of the graph are also chosen in a general form. All coefficients both in the differential expression and in the boundary conditions can additionally depend on the small parameter $\varepsilon$; this dependence is assumed to be analytic. As established earlier, the parts of the resolvent of the operator corresponding to the restrictions of the resolvent to the edges of fixed length and to the small edges are analytic in $\varepsilon$ as operators in the corresponding spaces, and the restriction to the small edges should be additionally sandwiched by a pair of dilatation operators. Analyticity means the possibility to represent these operators in the form of the corresponding Taylor series. The first main result of the paper is a procedure similar to the matching of asymptotic expansions for the recursive determination of all coefficients of these Taylor series. The second main result is the representation of the resolvent by a convergent series similar to a Taylor series with effective estimates of the remainders.
Keywords: graph, small edge, elliptic operator, resolvent, analyticity, Taylor series, matching of asymptotic expansions.
@article{TIMM_2022_28_1_a2,
     author = {D. I. Borisov and L. I. Gazizova},
     title = {Taylor {Series} for {Resolvents} of {Operators} on {Graphs} with {Small} {Edges}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {40--57},
     year = {2022},
     volume = {28},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a2/}
}
TY  - JOUR
AU  - D. I. Borisov
AU  - L. I. Gazizova
TI  - Taylor Series for Resolvents of Operators on Graphs with Small Edges
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 40
EP  - 57
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a2/
LA  - ru
ID  - TIMM_2022_28_1_a2
ER  - 
%0 Journal Article
%A D. I. Borisov
%A L. I. Gazizova
%T Taylor Series for Resolvents of Operators on Graphs with Small Edges
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 40-57
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a2/
%G ru
%F TIMM_2022_28_1_a2
D. I. Borisov; L. I. Gazizova. Taylor Series for Resolvents of Operators on Graphs with Small Edges. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 40-57. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a2/

[1] Pokornyi Yu.V., Penkin O.M., Pryadiev V.L., Borovskikh A.V., Lazarev K.P., Shabrov S.A., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2005, 272 pp.

[2] Berkolaiko G., Kuchment P., Introduction to quantum graphs, Americ. Math. Soc., Providence, 2013, 270 pp. | MR | Zbl

[3] Cheon T., Exner P., Turek O., “Approximation of a general singular vertex coupling in quantum graphs”, Ann. Phys., 325:3 (2010), 548–578 | DOI | MR | Zbl

[4] Zhikov V.V., “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izv. RAN. Ser. matematicheskaya, 66:2 (2002), 81–148 | MR | Zbl

[5] Berkolaiko G., Latushkin Yu., Sukhtaiev S., “Limits of quantum graph operators with shrinking edges”, Adv. Math., 352 (2019), 632–669 | DOI | MR | Zbl

[6] Cacciapuoti C., “Scale invariant effective hamiltonians for a graph with a small compact core”, Symmetry, 11:3 (2019), 359 | DOI | Zbl

[7] Borisov D.I., Konyrkulzhaeva M.N., “Vozmuschenie kraya nepreryvnogo spektra prosteishego grafa s malym rebrom”, Problemy mat. analiza, 2019, no. 97, 15–30 | Zbl

[8] Borisov D.I., Mukhametrakhimova A.I., “O modelnom grafe s petlei i malymi rebrami”, Problemy mat. analiza, 2020, no. 106, 17–42

[9] Borisov D.I., Konyrkulzhaeva M.N., Mukhametrakhimova A.I., “O diskretnom spektre modelnogo grafa s petlei i malymi rebrami”, Problemy mat. analiza, 2021, no. 111, 3–17 | Zbl

[10] Maz'ya V., Nazarov S., Plamenevskii B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. I, II, Birkhäuser Verlag, Basel, 2000, 758 pp. | MR

[11] Ilin A.M., Soglasovanie asimtoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[12] Borisov D.I., “Analyticity of resolvents of elliptic operators on quantum graphs with small edges”, Adv. Math., 2021, 108125 | DOI | MR

[13] Borisov D.I., “Spectra of elliptic operators on quantum graphs with small edges”, Mathematics, 9:16 (2021), 1874 | DOI | MR

[14] Berkolaiko G., Kuchment P., “Dependence of the spectrum of a quantum graph on vertex conditions and edge lengths”, Spectral Geometry, Ser. Proc. Sympos. Pure Math., 84, Amer. Math. Soc., Providence, RI, 2012, 117–137 | MR | Zbl