Voir la notice du chapitre de livre
@article{TIMM_2022_28_1_a2,
author = {D. I. Borisov and L. I. Gazizova},
title = {Taylor {Series} for {Resolvents} of {Operators} on {Graphs} with {Small} {Edges}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {40--57},
year = {2022},
volume = {28},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a2/}
}
D. I. Borisov; L. I. Gazizova. Taylor Series for Resolvents of Operators on Graphs with Small Edges. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 40-57. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a2/
[1] Pokornyi Yu.V., Penkin O.M., Pryadiev V.L., Borovskikh A.V., Lazarev K.P., Shabrov S.A., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2005, 272 pp.
[2] Berkolaiko G., Kuchment P., Introduction to quantum graphs, Americ. Math. Soc., Providence, 2013, 270 pp. | MR | Zbl
[3] Cheon T., Exner P., Turek O., “Approximation of a general singular vertex coupling in quantum graphs”, Ann. Phys., 325:3 (2010), 548–578 | DOI | MR | Zbl
[4] Zhikov V.V., “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izv. RAN. Ser. matematicheskaya, 66:2 (2002), 81–148 | MR | Zbl
[5] Berkolaiko G., Latushkin Yu., Sukhtaiev S., “Limits of quantum graph operators with shrinking edges”, Adv. Math., 352 (2019), 632–669 | DOI | MR | Zbl
[6] Cacciapuoti C., “Scale invariant effective hamiltonians for a graph with a small compact core”, Symmetry, 11:3 (2019), 359 | DOI | Zbl
[7] Borisov D.I., Konyrkulzhaeva M.N., “Vozmuschenie kraya nepreryvnogo spektra prosteishego grafa s malym rebrom”, Problemy mat. analiza, 2019, no. 97, 15–30 | Zbl
[8] Borisov D.I., Mukhametrakhimova A.I., “O modelnom grafe s petlei i malymi rebrami”, Problemy mat. analiza, 2020, no. 106, 17–42
[9] Borisov D.I., Konyrkulzhaeva M.N., Mukhametrakhimova A.I., “O diskretnom spektre modelnogo grafa s petlei i malymi rebrami”, Problemy mat. analiza, 2021, no. 111, 3–17 | Zbl
[10] Maz'ya V., Nazarov S., Plamenevskii B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. I, II, Birkhäuser Verlag, Basel, 2000, 758 pp. | MR
[11] Ilin A.M., Soglasovanie asimtoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR
[12] Borisov D.I., “Analyticity of resolvents of elliptic operators on quantum graphs with small edges”, Adv. Math., 2021, 108125 | DOI | MR
[13] Borisov D.I., “Spectra of elliptic operators on quantum graphs with small edges”, Mathematics, 9:16 (2021), 1874 | DOI | MR
[14] Berkolaiko G., Kuchment P., “Dependence of the spectrum of a quantum graph on vertex conditions and edge lengths”, Spectral Geometry, Ser. Proc. Sympos. Pure Math., 84, Amer. Math. Soc., Providence, RI, 2012, 117–137 | MR | Zbl