On the Weiss Conjecture. I
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 247-256
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\Gamma$ be a connected finite graph, and let $G$ be a vertex-transitive group of automorphisms of $\Gamma$ such that the stabilizer $G_x$ in $G$ of a vertex $x$ of $\Gamma$ induces on the neighborhood $\Gamma(x)$ of $x$ a primitive permutation group $G_x^{\Gamma(x)}$. The Weiss conjecture says that, under these assumptions, the order of $G_x$ is bounded from above by a number depending only on the order $|\Gamma(x)|$ of $\Gamma$. In a research whose first part is the present paper, we show that some general results of the theory of finite groups can be used to provide a largely uniform analysis for a number of cases of the Weiss conjecture (including some cases that were not considered before). Although this first part is introductory, it makes possible to use certain previous results to confirm the Weiss conjecture for all primitive groups $G_x^{\Gamma(x)}$ different from groups of AS type and from groups of PA type (constructed on the basis of groups of AS type).
Keywords: graph, group of automorphisms
Mots-clés : Weiss conjecture.
@article{TIMM_2022_28_1_a17,
     author = {V. I. Trofimov},
     title = {On the {Weiss} {Conjecture.} {I}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {247--256},
     year = {2022},
     volume = {28},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a17/}
}
TY  - JOUR
AU  - V. I. Trofimov
TI  - On the Weiss Conjecture. I
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 247
EP  - 256
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a17/
LA  - ru
ID  - TIMM_2022_28_1_a17
ER  - 
%0 Journal Article
%A V. I. Trofimov
%T On the Weiss Conjecture. I
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 247-256
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a17/
%G ru
%F TIMM_2022_28_1_a17
V. I. Trofimov. On the Weiss Conjecture. I. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 247-256. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a17/

[1] Chermak A., “Quadratic action and the ${\mathcal P}(G,V)$-theorem in arbitrary characteristic”, J. Group Theory, 2:1 (1999), 1–13 | DOI | MR | Zbl

[2] Dixon J. D., Mortimer B., Permutation groups, Springer-Verlag, NY etc., 1996, 346 pp. | MR | Zbl

[3] Kurzweil H., Stellmacher B., The theory of finite groups: an introduction, Springer-Verlag, NY etc., 2004, 387 pp. | DOI | MR | Zbl

[4] Liebeck M. W., Praeger C. E., Saxl J., “On the O'Nan-Scott theorem for finite primitive permutation groups”, J. Austral. Math. Soc. (A), 44:3 (1988), 389–396 | DOI | MR | Zbl

[5] Meierfrankenfeld U., Eine Lösung des Pushing-up Problems für eine Klasse endlicher Gruppen, Dissertation, Bielefeld, 1986 | MR | Zbl

[6] Meierfrankenfeld U., Stellmacher B., “The general $FF$-module theorem”, J. Algebra, 351 (2012), 1–63 | DOI | MR | Zbl

[7] Spiga P., “On G-locally primitive graphs of locally twisted wreath type and a conjecture of Weiss”, J. Combinatorial Theory. Ser. A, 118:8 (2011), 2257–2260 | DOI | MR | Zbl

[8] Spiga P., “An application of the local $C(G,T)$ theorem to a conjecture of Weiss”, Bull. London Math. Soc., 48:1 (2016), 12–18 | DOI | MR | Zbl

[9] Trofimov V. I., “Vertex stabilizers of locally projective groups of automorphisms of graphs: a summary”, Groups, Combinatorics and Geometry (Durham, 2001), World Sci. Publ., NJ etc., 2003, 313–326 | DOI | MR | Zbl

[10] van Bon J., “Thompson–Wielandt-like theorems revisited”, Bull. Lond. Math. Soc., 35:1 (2003), 30–36 | DOI | MR | Zbl

[11] Weiss R. M., “$s$-transitive graphs”, Algebraic methods in graph theory (Szeged, 1978), v. II, Colloq. Math. Soc. Janos Bolyai, 25, North-Holland, Amsterdam etc., 1981, 827–847 | MR

[12] Weiss R. M., “An application of p-factorization methods to symmetric graphs”, Math. Proc. Camb. Phil. Soc., 85:1 (1979), 43–48 | DOI | MR | Zbl