Voir la notice du chapitre de livre
Mots-clés : Weiss conjecture.
@article{TIMM_2022_28_1_a17,
author = {V. I. Trofimov},
title = {On the {Weiss} {Conjecture.} {I}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {247--256},
year = {2022},
volume = {28},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a17/}
}
V. I. Trofimov. On the Weiss Conjecture. I. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 247-256. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a17/
[1] Chermak A., “Quadratic action and the ${\mathcal P}(G,V)$-theorem in arbitrary characteristic”, J. Group Theory, 2:1 (1999), 1–13 | DOI | MR | Zbl
[2] Dixon J. D., Mortimer B., Permutation groups, Springer-Verlag, NY etc., 1996, 346 pp. | MR | Zbl
[3] Kurzweil H., Stellmacher B., The theory of finite groups: an introduction, Springer-Verlag, NY etc., 2004, 387 pp. | DOI | MR | Zbl
[4] Liebeck M. W., Praeger C. E., Saxl J., “On the O'Nan-Scott theorem for finite primitive permutation groups”, J. Austral. Math. Soc. (A), 44:3 (1988), 389–396 | DOI | MR | Zbl
[5] Meierfrankenfeld U., Eine Lösung des Pushing-up Problems für eine Klasse endlicher Gruppen, Dissertation, Bielefeld, 1986 | MR | Zbl
[6] Meierfrankenfeld U., Stellmacher B., “The general $FF$-module theorem”, J. Algebra, 351 (2012), 1–63 | DOI | MR | Zbl
[7] Spiga P., “On G-locally primitive graphs of locally twisted wreath type and a conjecture of Weiss”, J. Combinatorial Theory. Ser. A, 118:8 (2011), 2257–2260 | DOI | MR | Zbl
[8] Spiga P., “An application of the local $C(G,T)$ theorem to a conjecture of Weiss”, Bull. London Math. Soc., 48:1 (2016), 12–18 | DOI | MR | Zbl
[9] Trofimov V. I., “Vertex stabilizers of locally projective groups of automorphisms of graphs: a summary”, Groups, Combinatorics and Geometry (Durham, 2001), World Sci. Publ., NJ etc., 2003, 313–326 | DOI | MR | Zbl
[10] van Bon J., “Thompson–Wielandt-like theorems revisited”, Bull. Lond. Math. Soc., 35:1 (2003), 30–36 | DOI | MR | Zbl
[11] Weiss R. M., “$s$-transitive graphs”, Algebraic methods in graph theory (Szeged, 1978), v. II, Colloq. Math. Soc. Janos Bolyai, 25, North-Holland, Amsterdam etc., 1981, 827–847 | MR
[12] Weiss R. M., “An application of p-factorization methods to symmetric graphs”, Math. Proc. Camb. Phil. Soc., 85:1 (1979), 43–48 | DOI | MR | Zbl