On the calculation of the Hausdorff deviation of convex polygons in $\mathbb{R}^2$ from their geometric difference with disks
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 209-217 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study a problem concerning the calculation of the Hausdorff deviation of convex polygons in $\mathbb{R}^2$ from their geometric difference with disks of sufficiently small radius. Problems of this kind, in which not only convex polygons but also convex compact sets in Euclidean space $\mathbb{R}^n$ are considered, arise in various fields of mathematics, in particular, in the theory of differential games, control theory, and convex analysis. Estimates of the Hausdorff deviations of convex compact sets in $\mathbb{R}^n$ from their geometric difference with closed balls in $\mathbb{R}^n$ are found in the works of L.S. Pontryagin and his colleagues. These estimates are essential in deriving an estimate for the discrepancy between Pontryagin's alternating integral in linear differential games of pursuit and alternating sums. Similar estimates turn out to be useful in deriving an estimate for the discrepancy between reachable sets of nonlinear control systems in $\mathbb{R}^n$ and the sets approximating them. The paper considers a convex polygon in $\mathbb{R}^2$. We derive a formula for the Hausdorff deviation of the polygon from its geometric difference with a disk in $\mathbb{R}^2$ whose radius is less than the smallest of the radii of the circles inscribed in the three-links of the polygon.
Keywords: convex polygon in $\mathbb{R}^2$, Hausdorff deviation, disk, geometric difference of sets.
@article{TIMM_2022_28_1_a13,
     author = {M. V. Pershakov},
     title = {On the calculation of the {Hausdorff} deviation of convex polygons in $\mathbb{R}^2$ from their geometric difference with disks},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {209--217},
     year = {2022},
     volume = {28},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a13/}
}
TY  - JOUR
AU  - M. V. Pershakov
TI  - On the calculation of the Hausdorff deviation of convex polygons in $\mathbb{R}^2$ from their geometric difference with disks
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 209
EP  - 217
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a13/
LA  - ru
ID  - TIMM_2022_28_1_a13
ER  - 
%0 Journal Article
%A M. V. Pershakov
%T On the calculation of the Hausdorff deviation of convex polygons in $\mathbb{R}^2$ from their geometric difference with disks
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 209-217
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a13/
%G ru
%F TIMM_2022_28_1_a13
M. V. Pershakov. On the calculation of the Hausdorff deviation of convex polygons in $\mathbb{R}^2$ from their geometric difference with disks. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 209-217. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a13/

[1] Pontryagin L.S., “Lineinye differentsialnye igry presledovaniya”, Mat. sb., 112(154):3(7) (1980), 307–330 | MR | Zbl

[2] Pontryagin L.S., Izbrannye nauchnye trudy, v. 2, Nauka, M., 1988, 576 pp.

[3] Nikolskii M.S., “Ob alternirovannom integrale L.S. Pontryagina”, Mat. sb., 116(158):1(9) (1981), 136–144 | MR | Zbl

[4] Nikol'skii M.S., “Approximate computation of the least guaranteed estimate in linear differential games with a fixed duration”, J. Appl. Math. Mech., 46:4 (1982), 550–552 | DOI | Zbl

[5] Polovinkin E.S., “Stabilnost terminalnogo mnozhestva i optimalnost vremeni presledovaniya v differentsialnykh igrakh”, Differents. uravneniya, 20:3 (1984), 433–446 | MR | Zbl

[6] Ponomarev A.P., Rozov N.Kh., “Ustoichivost i skhodimost alternirovannykh summ Pontryagina”, Vestn. Moskov. un-ta. Ser. 15: Vychisl. matematika i kibernetika, 1978, no. 1, 82–90 | Zbl

[7] Azamov A.A., “Poluustoichivost i dvoistvennost v teorii alternirovannogo integrala Pontryagina”, Dokl. AN SSSR, 299:2 (1988), 265–268 | Zbl

[8] Polovinkin E.S. i dr., “Ob alternirovannom integrale L.S. Pontryagina. Stabilnost terminalnogo mnozhestva i optimalnost vremeni presledovaniya v differentsialnykh igrakh”, Mat. sb., 192:10 (2001), 95–122 | Zbl

[9] Azamov A.A., Iskanadjiev I.M., “Pontryagin's alternating integral for differential inclusions with counteraction”, Contributions to Game Theory and Management, 5 (2012), 33–44 | MR | Zbl

[10] Ershov A.A., Ushakov A.V., Ushakov V.N., “O dvukh igrovykh zadachakh o sblizhenii”, Mat. sb., 212:9 (2021), 40–74 | DOI | MR | Zbl

[11] Ushakov V.N., Pershakov M.V., “K otsenke khausdorfova otkloneniya vypuklykh mnogougolnikov v $\mathbb{R}^2$ ot ikh geometricheskoi raznosti s krugami”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Komp. nauki, 30:4 (2020), 585–603 | DOI | MR | Zbl

[12] Petrov N.N., Vvedenie v vypuklyi analiz, uch. posobie, Izd-vo UdGU, Izhevsk, 2008, 168 pp.