@article{TIMM_2022_28_1_a10,
author = {O. V. Kravtsova and D. S. Skok},
title = {The spread set method for the construction of finite quasifields},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {164--181},
year = {2022},
volume = {28},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a10/}
}
O. V. Kravtsova; D. S. Skok. The spread set method for the construction of finite quasifields. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 164-181. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a10/
[1] Dickson L.E., “Linear algebras in which division is always uniquely possible”, Trans. Amer. Math. Soc., 7:3 (1906), 370–390 | DOI | MR | Zbl
[2] Veblen O., Maclagan-Wedderburn J.H., “Non-Desarguesian and Non-Pascalian Geometries”, Trans. Amer. Math. Soc., 8:3 (1907), 379–388 | DOI | MR | Zbl
[3] Kholl M., Teoriya grupp, Izd-vo inostr. lit., M., 1962, 468 pp.
[4] Hughes D.R., Piper F.C., Projective planes, Springer-Verlag, NY, 1973, 292 pp. | MR | Zbl
[5] Dickson L.E., “On finite algebras”, Nachr. Akad. Wiss. Göttingen, Math.-Phys, II (1905), 358–393 URL: https://eudml.org/doc/58621
[6] Zassenhaus H., “Uber endliche Fastkörper”, Abh. Math. Sem. Hamburg, 11 (1936), 187–220 | DOI | MR
[7] Hall M., Jr., “Projective planes”, Trans. Amer. Math. Soc., 54 (1943), 229–277 | DOI | MR | Zbl
[8] Johnson N.L., Jha V., Biliotti M., Handbook of finite translation planes, Chapman Hall/CRC, London; NY, 2007, 888 pp. | MR | Zbl
[9] Kravtsova O.V., “On automorphisms of semifields and semifield planes”, Sib. Elektron. Mat. Izv., 13 (2016), 1300–1313 | DOI | MR | Zbl
[10] Levchuk V.M., Kravtsova O.V., “Problems on structure of finite quasifields and projective translation planes”, Lobachevskii J. Math., 38:4 (2017), 688–698 | DOI | MR | Zbl
[11] Maduram D.M., “Matrix representation of translation planes”, Geom. Dedicata, 4 (1975), 485–492 | DOI | MR | Zbl
[12] Podufalov N.D., “On spread sets and collineations of projective planes”, Contem. Math., 131:1 (1992), 697–705 | DOI | MR | Zbl
[13] Biliotti M., Jha V., Johnson N.L., Foundations of translation planes, Marcel Dekker Inc., NY, Basel, 2001, 542 pp. | MR | Zbl
[14] Mäurer H., “Die affine Projektivitätengruppe der Hallebenen [The affine group of projectivities of the Hall planes]”, Aequationes Math, 32 (1987), 271–273 URL: https://eudml.org/doc/137191 | MR | Zbl
[15] Nesbitt-Stobert S.B., Garner C.W.L., “A direct proof that all Hall planes of the same finite order are isomorphic”, Riv. Mat. Univ. Parma, 12:4 (1986), 241–247 URL: http://rivista.math.unipr.it/fulltext/1986-12/1986-12-241.pdf | MR | Zbl
[16] Wähling H., Theorie der Fastkörper, Thales Monographs, 1, Thales-Verlag, Essen, 1987, 393 pp. | MR | Zbl
[17] Kravtsova O.V., Levchuk V.M., “Voprosy stroeniya konechnykh pochti-polei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:4 (2019), 107–117 | DOI | MR
[18] Grishkov A.N., Zavarnitsyn A.V., “Lagrange's theorem for Moufang loops”, Math. Proc. Phil. Soc., 139 (2005), 41–57 | DOI | MR | Zbl
[19] Grishkov A.N., Zavarnitsyn A.V., “Sylow's theorems for Moufang loops”, J. Algebra, 321:7 (2009), 1813–1825 | DOI | MR | Zbl
[20] Yakovleva T.N., “Voprosy stroeniya kvazipolei s assotsiativnymi stepenyami”, Izv. Irkut. gos. un-ta. Ser. “Matematika”, 29 (2019), 107–119 | DOI | Zbl
[21] Chein O., “Moufang loops of small order. I”, Trans. of the Amer. Math. Soc., 188:2 (1974), 31–51 | DOI | MR | Zbl
[22] Knuth D.E., “Finite semifields and projective planes”, J. Algebra, 2 (1965), 182–217 | DOI | MR | Zbl
[23] Kantor W.M., “Commutative semifields and symplectic spreads”, J. Algebra, 270:1 (2003), 96–114 | DOI | MR | Zbl
[24] Lavrauw M., Polverino O., “Finite semifields”, Current research topics in Galois Geometry, Chapter 6, eds. L. Storme and J. De Beule, NOVA Acad. Publ., NY, 2011, 131–160 URL: http://hdl.handle.net/1854/LU-2152960
[25] Wene G.P., “On the multiplicative structure of finite division rings”, Aequationes Math., 41 (1991), 222–233 | DOI | MR | Zbl
[26] Hentzel I.R., Rua I.F., “Primitivity of finite semifields with 64 and 81 elements”, Internat. J. Algebra and Computation, 17:7 (2007), 1411–1429 | DOI | MR | Zbl
[27] Kravtsova O.V., “On alternating subgroup $A_5$ in autotopism group of finite semifield plane”, Sib. Elektron. Mat. Izv., 17 (2020), 47–50 | DOI | MR | Zbl
[28] Oyama T., “On quasifields”, Osaka J. Math., 22 (1985), 35–54 URL: https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-22/issue-1/On-quasifields/ojm/1200778033.full | MR | Zbl