On the best M-term approximations of functions from the Nikol'skii-Besov class in the Lorentz space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 7-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider spaces of periodic functions of many variables, specifically, the Lorentz space $L_{p,\tau}(\mathbb{T}^{m})$ and the Nikol'skii–Besov space $S_{p,\tau,\theta}^{\bar{r}}B$, and study the best $M$-term approximation of a function $f\in L_{p,\tau}(\mathbb{T}^{m})$ by trigonometric polynomials. Order-exact estimates for the best $M$-term approximations of functions from the Nikol'skii–Besov class $S_{p, \tau_{1}, \theta}^{\bar{r}}B$ in the norm of the space $L_{q,\tau_{2}}(\mathbb{T}^{m})$ are derived for different relations between the parameters $p$, $q$, $\tau_{1}$, $\tau_{2}$, and $\theta$.
Keywords: Lorentz space, trigonometric polynomial, best $M$-term approximation.
Mots-clés : Nikol'skii–Besov class
@article{TIMM_2022_28_1_a0,
     author = {G. A. Akishev},
     title = {On the best {M-term} approximations of functions from the {Nikol'skii-Besov} class in the {Lorentz} space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {7--26},
     year = {2022},
     volume = {28},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a0/}
}
TY  - JOUR
AU  - G. A. Akishev
TI  - On the best M-term approximations of functions from the Nikol'skii-Besov class in the Lorentz space
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2022
SP  - 7
EP  - 26
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a0/
LA  - ru
ID  - TIMM_2022_28_1_a0
ER  - 
%0 Journal Article
%A G. A. Akishev
%T On the best M-term approximations of functions from the Nikol'skii-Besov class in the Lorentz space
%J Trudy Instituta matematiki i mehaniki
%D 2022
%P 7-26
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a0/
%G ru
%F TIMM_2022_28_1_a0
G. A. Akishev. On the best M-term approximations of functions from the Nikol'skii-Besov class in the Lorentz space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 7-26. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a0/

[1] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, Moskva, 1974, 333 pp.

[2] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977, 456 pp. | MR

[3] Lizorkin P.I., Nikolskii S.M., “Prostranstva funktsii smeshannoi gladkosti s dekompozitsionnoi tochki zreniya”, Tr. MIAN SSSR, 187 (1989), 143–161

[4] Amanov T.I., Prostranstva differentsiruemykh funktsii s dominiruyuschei smeshannoi proizvodnoi, Nauka, Alma-ata, 1976, 224 pp. | MR

[5] Temlyakov V., Multivariate approximation, Cambridge Univ. Press, Cambridge, 2018, 551 pp. | DOI | MR | Zbl

[6] Stechkin S.B., “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, Dokl. AN SSSR, 102:2 (1955), 37–40 | Zbl

[7] Ismagilov R.S., “Poperechniki mnozhestv v lineinykh normirovannykh prostranstvakh i priblizhenie funktsii trigonometricheskimi mnogochlenami”, Uspekhi mat. nauk., 29:3, 161–178 | MR | Zbl

[8] Belinskii E.S., “Priblizhenie “plavayuschei” sistemoi eksponent na klassakh gladkikh periodicheskikh funktsii”, Mat. sb., 132:1 (1987), 20–27

[9] Belinskii E.S., “Priblizhenie periodicheskikh funktsii s “plavayuschei” sistemoi eksponent i trigonometricheskie poperechniki”, Issledovaniya po teorii funktsii mnogikh veschestvennykh peremennykh, sb. statei, Yaroslavl, 1984, 10–24 | MR

[10] Belinskii E.S., “Priblizhenie “plavayuschei” sistemoi eksponent na klassakh periodicheskikh funktsii s ogranichennoi smeshannoi proizvodnoi”, Issledovaniya po teorii funktsii mnogikh veschestvennykh peremennykh, sb. statei, Yaroslavl, 1988, 16–33 | MR

[11] Makovoz Y., “On trigonometric $n$-widths and their generalization”, J. Approx. Theory, 41:4 (1984), 361–366 | DOI | MR | Zbl

[12] Maiorov V.E., “Trigonometricheskie poperechniki sobolevskikh klassov $W^{r}_{p}$ v prostranstve $L_q$”, Mat. zametki, 40:2 (1986), 161–173 | MR | Zbl

[13] Kashin B.S., “Ob approksimatsionnykh svoistvakh polnykh ortonormirovannykh sistem”, Tr. MIAN SSSR, 172 (1985), 187–201

[14] DeVore R.A., “Nonlinear approximation”, Acta Numerica, 7:51 (1998), 51–150 | DOI | MR | Zbl

[15] Temlyakov V.N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN SSSR, 178 (1986), 1–112 | Zbl

[16] Temlyakov V.N., Greedy approximation, Cambridge Univ. Press, Cambridge, 2011, 434 pp. | MR | Zbl

[17] Temlyakov V.N., “Konstruktivnye razrezhennye trigonometricheskie priblizheniya i drugie zadachi dlya funktsii smeshannoi gladkosti”, Mat. sb., 206:11 (2015), 131–1160 | MR

[18] Temlyakov V.N., “Constructive sparse trigonometric approximation for functions with small mixed smoothness”, Constr. Approx., 45:3 (2017), 467–495 | DOI | MR | Zbl

[19] Romanyuk A.S., “Nailuchshie M-chlennye trigonometricheskie priblizheniya klassov Besova periodicheskikh funktsii mnogikh peremennykh”, Izv. RAN. Ser. matematicheskaya, 67:2 (2003), 61–100 | MR | Zbl

[20] Romanyuk A.S., “Nailuchshie trigonometricheskie priblizheniya klassov periodicheskikh funktsii mnogikh peremennykh v ravnomernoi metrike”, Mat. zametki, 82:2 (2007), 247–261 | MR | Zbl

[21] Dinh Dung, “On asymptotic order of n-term approximations and non-linear n-widths”, Vietnam J. Math., 27:4 (1999), 363–367 | MR | Zbl

[22] Wang Heping, Sun Yongsheng, “Representation and m-term approximation for anisotropic classes”, Theory of approximation of function and applications, eds. S. M. Nikol'skii et al., Institute of Russian Academy, Moscow, 2003, 250–268

[23] Duan L.Q., Fang G.S., “Trigonometric widths and best N-term approximations of the generalized periodic Besov classes $B_{p, \theta}^{\Omega}$”, J. Math. Resear. Expos., 31:1 (2011), 129–141 | DOI | MR | Zbl

[24] Hansen M., Sickel W., “Best m-term approximation and Lizorkin-Triebel spaces”, J. Approx. Theory, 163:8 (2011), 923–954 | DOI | MR | Zbl

[25] Hansen M., Sickel W., “Best m-term approximation and Sobolev-Besov spaces of dominating mixed smoothness the case of compact embeddings”, Constr. Approx., 36:1 (2012), 1–51 | DOI | MR | Zbl

[26] Stasyuk S.A., “Best m-term trigonometric approximation for the classes $B_{p, \theta}^{r}$ of functions of low smoothness”, Ukr. Math. J., 62:1 (2010), 114–122 | DOI | MR | Zbl

[27] Stasyuk S.A., “Best m-term trigonometric approximation of periodic function of several variables from Nikol'skii-Besov classes for small smoothness”, J. Approx. Theory, 177 (2014), 1–16 | DOI | MR | Zbl

[28] Stasyuk S.A., “Approximating characteristics of the analogs of Besov classes with logarithmic smoothness”, Ukr. Math. J., 66:4 (2014), 553–560 | DOI | MR | Zbl

[29] Shidlich A.L., Approximation of certain classes of functions of several variables by greedy approximates in the integral metrics, 2013, 16 pp., arXiv: 1302.2790v1 | Zbl

[30] Bazarkhanov D.B., Temlyakov V.N., Nonlinear tensor product approximation of functions, 2014, 23 pp., arXiv: 1409.1403v1 | MR | Zbl

[31] Bazarkhanov D.B., “Nelineinye trigonometricheskie priblizheniya klassov funktsii mnogikh peremennykh”, Tr. matematicheskogo in-ta RAN, 293 (2016), 8–42 | Zbl

[32] Dung Dinh, Temlyakov V., Ullrich T., Hyperbolic cross approximation, Birkhäuser, Cham, 2018, 218 pp. | DOI | MR | Zbl

[33] Akishev G., “O poryadkakh $M$-chlennykh priblizhenii klassov funktsii simmetrichnogo prostranstva”, Mat. zhurn., 14:4 (2014), 46–71 | Zbl

[34] Akishev G., “O tochnosti otsenok nailuchshego $M$-chlennogo priblizheniya klassa Besova”, Sib. elektronnye mat. izv., 7 (2010), 255–274 | Zbl

[35] Akishev G., “O poryadkakh $M$-chlennogo priblizheniya klassov v prostranstve Lorentsa”, Mat. zhurn., 11:1 (2011), 5–29 | MR | Zbl

[36] Akishev G., “Trigonometricheskie poperechniki klassov Nikolskogo–Besova v prostranstve Lebega so smeshannoi normoi”, Ukr. mat. zhurn., 66:6 (2014), 723–732 | Zbl

[37] Akishev G., “On M-term approximations of the Nikol'skii–Besov class”, Hacet. Jour. Math. and Stat., 45:2 (2016), 297–310 | DOI | MR | Zbl

[38] Akishev G., “Estimations of the best $M$-term approximationsof functions in the Lorentz space with constructive methods”, Bull. Karaganda Univer. Math. Ser., 2017, no. 3, 13–26 | MR

[39] Trigub R.M. and Belinsky E.S., Fourier analysis and approximation of functions, Springer, Dordrecht, 2004, 585 pp. | DOI | MR

[40] Galeev E.M., “Poryadkovye otsenki proizvodnykh periodicheskogo mnogomernogo - yadra Dirikhle v smeshannoi norme”, Mat. sb., 117:1 (1982), 32–43 | MR | Zbl