On the best M-term approximations of functions from the Nikol'skii-Besov class in the Lorentz space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 7-26
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider spaces of periodic functions of many variables, specifically, the Lorentz space $L_{p,\tau}(\mathbb{T}^{m})$ and the Nikol'skii–Besov space $S_{p,\tau,\theta}^{\bar{r}}B$, and study the best $M$-term approximation of a function $f\in L_{p,\tau}(\mathbb{T}^{m})$ by trigonometric polynomials. Order-exact estimates for the best $M$-term approximations of functions from the Nikol'skii–Besov class $S_{p, \tau_{1}, \theta}^{\bar{r}}B$ in the norm of the space $L_{q,\tau_{2}}(\mathbb{T}^{m})$ are derived for different relations between the parameters $p$, $q$, $\tau_{1}$, $\tau_{2}$, and $\theta$.
Keywords:
Lorentz space, trigonometric polynomial, best $M$-term approximation.
Mots-clés : Nikol'skii–Besov class
Mots-clés : Nikol'skii–Besov class
@article{TIMM_2022_28_1_a0,
author = {G. A. Akishev},
title = {On the best {M-term} approximations of functions from the {Nikol'skii-Besov} class in the {Lorentz} space},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {7--26},
publisher = {mathdoc},
volume = {28},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a0/}
}
TY - JOUR AU - G. A. Akishev TI - On the best M-term approximations of functions from the Nikol'skii-Besov class in the Lorentz space JO - Trudy Instituta matematiki i mehaniki PY - 2022 SP - 7 EP - 26 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a0/ LA - ru ID - TIMM_2022_28_1_a0 ER -
G. A. Akishev. On the best M-term approximations of functions from the Nikol'skii-Besov class in the Lorentz space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 28 (2022) no. 1, pp. 7-26. http://geodesic.mathdoc.fr/item/TIMM_2022_28_1_a0/