Comparison of the remainders of the Simpson quadrature formula and the quadrature formula for three-point rational interpolants
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 102-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A quadrature formula with positive coefficients is constructed with the use of three nodes $a$, $b$, and $c=(a+b)/2$ and rational interpolants of the form $\rho (x)= \alpha +\beta (x-c)+\gamma/(x-g)$ with a pole $g$ determined by nodes outside the integration interval $[a,b]$. The error of the constructed formula is smaller than the error of the corresponding Simpson quadrature formula if the integrand $f(x)$ has a continuous derivative $f^{(4)}(x)$ on the interval $[a,b]$ and the inequality $f^{(4)}(x) f^{\prime\prime}(x)>0$ is satisfied.
Mots-clés : rational interpolant, quadrature formula
Keywords: Simpson formula.
@article{TIMM_2021_27_4_a7,
     author = {A.-R. K. Ramazanov and V. G. Magomedova},
     title = {Comparison of the remainders of the {Simpson} quadrature formula and the quadrature formula for three-point rational interpolants},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {102--110},
     year = {2021},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a7/}
}
TY  - JOUR
AU  - A.-R. K. Ramazanov
AU  - V. G. Magomedova
TI  - Comparison of the remainders of the Simpson quadrature formula and the quadrature formula for three-point rational interpolants
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 102
EP  - 110
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a7/
LA  - ru
ID  - TIMM_2021_27_4_a7
ER  - 
%0 Journal Article
%A A.-R. K. Ramazanov
%A V. G. Magomedova
%T Comparison of the remainders of the Simpson quadrature formula and the quadrature formula for three-point rational interpolants
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 102-110
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a7/
%G ru
%F TIMM_2021_27_4_a7
A.-R. K. Ramazanov; V. G. Magomedova. Comparison of the remainders of the Simpson quadrature formula and the quadrature formula for three-point rational interpolants. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 102-110. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a7/

[1] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972, 316 pp.

[2] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976, 248 pp.

[3] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980, 352 pp.

[4] Berdyshev V. I., Subbotin Yu. N., Chislennye metody priblizheniya funktsii, Sredne-Uralskoe kn. izd-vo, Sverdlovsk, 1979, 120 pp.

[5] Arushanyan I. O., Primenenie metoda kvadratur dlya chislennogo resheniya integralnykh uravnenii vtorogo roda, Izd-vo TsPI mekh.-mat. MGU, M., 2018, 61 pp.

[6] Edeo A., Gofeb G., Tefera T., “Shape preserving $C^2$ rational cubic spline interpolation”, American Scientific Research Journal for Engineering, Technology and Sciences, 12:1 (2015), 110–122

[7] Magomedova V. G., Ramazanov A.-R. K., “O priblizhennom reshenii differentsialnykh uravnenii s pomoschyu ratsionalnykh splain-funktsii”, Zhurn. vychisl. matematiki i mat. fiziki, 59:4 (2019), 579–586 | DOI | Zbl

[8] Nikolskii S. M., Kvadraturnye formuly, Nauka, M., 1988, 255 pp.

[9] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Laboratoriya Bazovykh Znanii, M., 2002, 632 pp.

[10] Krylov V. I., Bobkov V. V., Monastyrnyi P. I., Vychislitelnye metody, v. 1, Nauka, M., 1976, 304 pp.

[11] Ramazanov A.-R. K., Magomedova V. G., “Splainy po trekhtochechnym ratsionalnym interpolyantam s avtonomnymi polyusami”, Dagestanskie elektron. mat. izv., 2017, no. 7, 16–28 | DOI

[12] Khauskholder A. S., Osnovy chislennogo analiza, Izd-vo inostr. lit., M., 1956, 320 pp.