Semigroups of operators related to stochastic processes in an extension of the Gelfand-Shilov classification
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 74-87
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Semigroups of operators corresponding to stochastic Levy processes are considered, and their connection with pseudo-differential $(\Psi D)$ operators is studied. It is shown that the semigroup generators are $\Psi D$-operators and operators with kernels from the space of slowly growing distributions. A classification of Cauchy problems is constructed for equations with operators from a special class of $\Psi D$-operators with polynomially bounded symbols. The constructed classification extends the Gelfand–Shilov classification for differential systems. In the extended classification, Cauchy problems with generators corresponding to Levy processes are well-posed in the sense of Petrovskii.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Levy process, transition probability, semigroup of operators, pseudo-differential operator, Levy–Khintchine formula.
                    
                  
                
                
                @article{TIMM_2021_27_4_a5,
     author = {I. V. Mel'nikova and V. A. Bovkun},
     title = {Semigroups of operators related to stochastic processes in an extension of the {Gelfand-Shilov} classification},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {74--87},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a5/}
}
                      
                      
                    TY - JOUR AU - I. V. Mel'nikova AU - V. A. Bovkun TI - Semigroups of operators related to stochastic processes in an extension of the Gelfand-Shilov classification JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 74 EP - 87 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a5/ LA - ru ID - TIMM_2021_27_4_a5 ER -
%0 Journal Article %A I. V. Mel'nikova %A V. A. Bovkun %T Semigroups of operators related to stochastic processes in an extension of the Gelfand-Shilov classification %J Trudy Instituta matematiki i mehaniki %D 2021 %P 74-87 %V 27 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a5/ %G ru %F TIMM_2021_27_4_a5
I. V. Mel'nikova; V. A. Bovkun. Semigroups of operators related to stochastic processes in an extension of the Gelfand-Shilov classification. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 74-87. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a5/
