Gravitational flow of a two-phase viscous incompressible liquid
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 61-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Many natural phenomena and processes, such as lava flows during extrusive eruptions of volcanoes, mudflows, rock landslides, and snow avalanches, can have catastrophic consequences for the life and activities of humans and animals. Mathematical modeling of such problems is an important scientific problem. All these and many other phenomena and processes can be represented by models of the gravitational flow of a viscous incompressible fluid. The main driving forces in the evolution of these flows are the forces of gravitation, viscous friction, and interphase interaction. For the mathematical description of such processes, we propose mathematical models of the motion of a two-phase viscous incompressible fluid. One phase of such a fluid is a viscous incompressible fluid (viscous phase) itself, and the other phase is an incompressible fluid with low density and low viscosity, which will be called air for convenience. The introduction of the air phase makes it possible to slightly simplify the mathematical model for the total fluid flow and simplify the boundary conditions for it. The mathematical model includes the Navier–Stokes equation, the incompressibility equation, the viscous phase transfer equation, and the corresponding initial and boundary value conditions. The introduced mathematical models are studied. It is established that the corresponding initial–boundary value problems are well-posed. Theorems on the solvability in the generalized (weak) sense are proved for initial–boundary value problems. The dependence of the solution on the initial data and some parameters of the model is investigated.
Keywords: viscosity, multiphase liquid, Navier–Stokes equation, generalized solution.
Mots-clés : viscous liquid, incompressible liquid, transfer equation
@article{TIMM_2021_27_4_a4,
     author = {A. I. Korotkii and Yu. V. Starodubtseva and I. A. Tsepelev},
     title = {Gravitational flow of a two-phase viscous incompressible liquid},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {61--73},
     year = {2021},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a4/}
}
TY  - JOUR
AU  - A. I. Korotkii
AU  - Yu. V. Starodubtseva
AU  - I. A. Tsepelev
TI  - Gravitational flow of a two-phase viscous incompressible liquid
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 61
EP  - 73
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a4/
LA  - ru
ID  - TIMM_2021_27_4_a4
ER  - 
%0 Journal Article
%A A. I. Korotkii
%A Yu. V. Starodubtseva
%A I. A. Tsepelev
%T Gravitational flow of a two-phase viscous incompressible liquid
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 61-73
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a4/
%G ru
%F TIMM_2021_27_4_a4
A. I. Korotkii; Yu. V. Starodubtseva; I. A. Tsepelev. Gravitational flow of a two-phase viscous incompressible liquid. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 61-73. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a4/

[1] Romanova D. I., “Trekhmernoe modelirovanie skhoda lavinnykh potokov sredstvami paketa OpenFOAM”, Tr. In-ta sistemnogo programmirovaniya RAN, 29:1 (2017), 85–100 | DOI

[2] Tsepelev I., Ismail-Zadeh A., Melnik O., Korotkii A., “Numerical modelling of fluid flow with rafts: An application to lava flows”, J. Geodynamics, 97 (2016), 31–41 | DOI

[3] Malneva I. V., Kononova N. K., Krestin B. M., “Osobennosti razvitiya opasnykh prirodnykh protsessov na territorii Bolshogo Sochi v sootvetstvii s sovremennymi izmeneniyami klimata”, Ustoichivoe razvitie gornykh territorii, 8:1 (2016), 73–80 | DOI

[4] Ismail-Zadeh A., Takeuchi K., “Preventive disaster management of extreme natural events”, Natural Hazards, 42:3 (2007), 459–467 | DOI

[5] Chandrasekhar S., Hydrodynamic and hydromagnetic stability, Clarendon Press, Oxford, 1961, 652 pp. | Zbl

[6] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1986, 736 pp.

[7] Prosperetti A., Tryggvason G., Computational methods for multiphase flow, Cambridge University Press, Cambridge, 2007, 470 pp.

[8] Kolev N. I., Multiphase flow dynamics, Springer-Verlag, Berlin; Heidelberg, 2011, 781 pp.

[9] Nigmatulin R. I., Dinamika mnogofaznykh sred, Chast 1, Nauka, M., 1987, 464 pp.

[10] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970, 288 pp.

[11] Ismail-zade A. T., Lobkovskii L. I., Naimark B. M., “Gidrodinamicheskaya model formirovaniya osadochnogo basseina v rezultate obrazovaniya i posleduyuschego fazovogo perekhoda magmaticheskoi linzy v verkhnei mantii”, Vych. seismologiya. Geodinamika i prognoz zemletryasenii, no. 26, Nauka, M., 1994, 139–155

[12] Volozh Y. A., Talbot C. J., Ismail-Zadeh A. T., “Salt structures and hydrocarbons in the Pricaspian basin”, American Association of Petroleum Geologist Bulletin, 87:2 (2003), 313–334 | DOI

[13] Temam R., Uravneniya Nave - Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981, 408 pp.

[14] Lions Zh. L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 587 pp.

[15] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i praktika, Nauchnaya kniga, Novosibirsk, 1999, 352 pp.

[16] Alekseev G. V., Tereshko D. A., Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008, 364 pp.

[17] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983, 320 pp.

[18] Kazhikhov A. V., Izbrannye trudy. Matematicheskaya gidrodinamika, Izd-vo In-ta gidrodinamiki im. M. A. Lavrenteva SO RAN, Novosibirsk, 2008, 420 pp.

[19] Ismail-Zadeh A., Korotkii A., Schubert G., Tsepelev I., “Numerical techniques for solving the inverse retrospective problems of thermal evolution of the Earth interior”, Computers and Structures, 87:11-12 (2009), 802–811 | DOI

[20] Ismail-Zadeh A., Korotkii A., Tsepelev I., Data-driven numerical modelling in geodynamics: Methods and applications, Springer Intern. Publ., Berlin, 2016, 105 pp. | DOI