Order estimates for Lebesgue constants of Fourier sums in Orlicz spaces
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 35-47
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the problem of order estimates for partial sums of trigonometric Fourier series as operators from Orlicz spaces $L^{\varphi}_{2\pi}$ to the space of $2\pi$-periodic continuous functions $C_{2\pi}$. It is established that an arbitrary function $\varphi$ generating an Orlicz class satisfies the estimate $$ ||S_n(f)||_{C_{2\pi}} \le C \varphi ^{-1} (n) \ln (n+1) ||f||_{L^{\varphi}_{2\pi}}, \tag{*} $$ where $f \in L^{\varphi}_{2\pi}$, $n \in \mathbb{N}$, $S_n(f)$ is the $n$th partial sum of the trigonometric Fourier series of $f$, and the constant $C>0$ is independent of $f$ and $n$. In addition, it is shown that if the function $\varphi$ satisfies the $\Delta_2$-condition, then the estimate can be improved. More exactly, $$ ||S_n(f)||_{C_{2\pi}} \le C \varphi ^{-1} (n) ||f||_{L^{\varphi}_{2\pi}}, \qquad f \in L^{\varphi}_{2\pi}, \, n \in \mathbb{N}, \, C=C(\varphi ). \tag {**} $$ Counterexamples are constructed, which show that if $\varphi$ satisfies the $\Delta_2$-condition, then estimate ($\ast \ast $) is unimprovable in order on the space $L^{\varphi}_{2\pi}$ and, if $\varphi$ satisfies the $\Delta^2$-condition, then estimate ($\ast $) is unimprovable in order on the space $ L^{\varphi}_{2\pi}$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Fourier series, Orlicz space
Mots-clés : Lebesgue constants.
                    
                  
                
                
                Mots-clés : Lebesgue constants.
@article{TIMM_2021_27_4_a2,
     author = {N. Yu. Antonov and A. N. Lukoyanov},
     title = {Order estimates for {Lebesgue} constants of {Fourier} sums in {Orlicz} spaces},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {35--47},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a2/}
}
                      
                      
                    TY - JOUR AU - N. Yu. Antonov AU - A. N. Lukoyanov TI - Order estimates for Lebesgue constants of Fourier sums in Orlicz spaces JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 35 EP - 47 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a2/ LA - ru ID - TIMM_2021_27_4_a2 ER -
N. Yu. Antonov; A. N. Lukoyanov. Order estimates for Lebesgue constants of Fourier sums in Orlicz spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 35-47. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a2/
