Order estimates for Lebesgue constants of Fourier sums in Orlicz spaces
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 35-47
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the problem of order estimates for partial sums of trigonometric Fourier series as operators from Orlicz spaces $L^{\varphi}_{2\pi}$ to the space of $2\pi$-periodic continuous functions $C_{2\pi}$. It is established that an arbitrary function $\varphi$ generating an Orlicz class satisfies the estimate $$ ||S_n(f)||_{C_{2\pi}} \le C \varphi ^{-1} (n) \ln (n+1) ||f||_{L^{\varphi}_{2\pi}}, \tag{*} $$ where $f \in L^{\varphi}_{2\pi}$, $n \in \mathbb{N}$, $S_n(f)$ is the $n$th partial sum of the trigonometric Fourier series of $f$, and the constant $C>0$ is independent of $f$ and $n$. In addition, it is shown that if the function $\varphi$ satisfies the $\Delta_2$-condition, then the estimate can be improved. More exactly, $$ ||S_n(f)||_{C_{2\pi}} \le C \varphi ^{-1} (n) ||f||_{L^{\varphi}_{2\pi}}, \qquad f \in L^{\varphi}_{2\pi}, \, n \in \mathbb{N}, \, C=C(\varphi ). \tag {**} $$ Counterexamples are constructed, which show that if $\varphi$ satisfies the $\Delta_2$-condition, then estimate ($\ast \ast $) is unimprovable in order on the space $L^{\varphi}_{2\pi}$ and, if $\varphi$ satisfies the $\Delta^2$-condition, then estimate ($\ast $) is unimprovable in order on the space $ L^{\varphi}_{2\pi}$.
Keywords:
Fourier series, Orlicz space
Mots-clés : Lebesgue constants.
Mots-clés : Lebesgue constants.
@article{TIMM_2021_27_4_a2,
author = {N. Yu. Antonov and A. N. Lukoyanov},
title = {Order estimates for {Lebesgue} constants of {Fourier} sums in {Orlicz} spaces},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {35--47},
year = {2021},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a2/}
}
TY - JOUR AU - N. Yu. Antonov AU - A. N. Lukoyanov TI - Order estimates for Lebesgue constants of Fourier sums in Orlicz spaces JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 35 EP - 47 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a2/ LA - ru ID - TIMM_2021_27_4_a2 ER -
N. Yu. Antonov; A. N. Lukoyanov. Order estimates for Lebesgue constants of Fourier sums in Orlicz spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 35-47. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a2/
[1] Bari N.K., Trigonometricheskie ryady, GIMFL, M., 1961, 937 pp.
[2] Zigmund A., Trigonometricheskie ryady, v 2 t., v. 1, Mir, M., 1965, 616 pp.
[3] Krasnoselskii M.A., Rutitskii Ya.B., Vypuklye funktsii i prostranstva Orlicha, GIMFL, M., 1958, 272 pp.
[4] Rao M.M., Ren Z.D., Theory of Orlicz spaces, M. Dekker, NY, 1991, 445 pp. | Zbl
[5] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976, 544 pp.