Order estimates for Lebesgue constants of Fourier sums in Orlicz spaces
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 35-47

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of order estimates for partial sums of trigonometric Fourier series as operators from Orlicz spaces $L^{\varphi}_{2\pi}$ to the space of $2\pi$-periodic continuous functions $C_{2\pi}$. It is established that an arbitrary function $\varphi$ generating an Orlicz class satisfies the estimate $$ ||S_n(f)||_{C_{2\pi}} \le C \varphi ^{-1} (n) \ln (n+1) ||f||_{L^{\varphi}_{2\pi}}, \tag{*} $$ where $f \in L^{\varphi}_{2\pi}$, $n \in \mathbb{N}$, $S_n(f)$ is the $n$th partial sum of the trigonometric Fourier series of $f$, and the constant $C>0$ is independent of $f$ and $n$. In addition, it is shown that if the function $\varphi$ satisfies the $\Delta_2$-condition, then the estimate can be improved. More exactly, $$ ||S_n(f)||_{C_{2\pi}} \le C \varphi ^{-1} (n) ||f||_{L^{\varphi}_{2\pi}}, \qquad f \in L^{\varphi}_{2\pi}, \, n \in \mathbb{N}, \, C=C(\varphi ). \tag {**} $$ Counterexamples are constructed, which show that if $\varphi$ satisfies the $\Delta_2$-condition, then estimate ($\ast \ast $) is unimprovable in order on the space $L^{\varphi}_{2\pi}$ and, if $\varphi$ satisfies the $\Delta^2$-condition, then estimate ($\ast $) is unimprovable in order on the space $ L^{\varphi}_{2\pi}$.
Keywords: Fourier series, Orlicz space
Mots-clés : Lebesgue constants.
@article{TIMM_2021_27_4_a2,
     author = {N. Yu. Antonov and A. N. Lukoyanov},
     title = {Order estimates for {Lebesgue} constants of {Fourier} sums in {Orlicz} spaces},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {35--47},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a2/}
}
TY  - JOUR
AU  - N. Yu. Antonov
AU  - A. N. Lukoyanov
TI  - Order estimates for Lebesgue constants of Fourier sums in Orlicz spaces
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 35
EP  - 47
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a2/
LA  - ru
ID  - TIMM_2021_27_4_a2
ER  - 
%0 Journal Article
%A N. Yu. Antonov
%A A. N. Lukoyanov
%T Order estimates for Lebesgue constants of Fourier sums in Orlicz spaces
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 35-47
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a2/
%G ru
%F TIMM_2021_27_4_a2
N. Yu. Antonov; A. N. Lukoyanov. Order estimates for Lebesgue constants of Fourier sums in Orlicz spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 35-47. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a2/