@article{TIMM_2021_27_4_a18,
author = {J. Li and W. Shi},
title = {On {Some} {Conjectures} {Related} to {Quantitative} {Characterizations} of {Finite} {Nonabelian} {Simple} {Groups}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {269--275},
year = {2021},
volume = {27},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a18/}
}
TY - JOUR AU - J. Li AU - W. Shi TI - On Some Conjectures Related to Quantitative Characterizations of Finite Nonabelian Simple Groups JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 269 EP - 275 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a18/ LA - en ID - TIMM_2021_27_4_a18 ER -
J. Li; W. Shi. On Some Conjectures Related to Quantitative Characterizations of Finite Nonabelian Simple Groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 269-275. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a18/
[1] Anabanti C.S., “A counterexample to Zarrin's conjecture on sizes of finite nonabelian simple groups in relation to involution sizes”, Arch. Math., 112:3 (2019), 225–226 | DOI | Zbl
[2] Anabanti C.S., Hammer S., Okoli N.C., “An infinitude of counterexamples to Herzog's conjecture on involutions in simple groups”, Communications in Algebra, 49:4 (2021), 1415–1421 | DOI | Zbl
[3] Bi J.X., “Characterization of alternating groups by orders of normalizers of Sylow subgroups”, Algebra Colloq., 8:3 (2001), 249–256 | Zbl
[4] Cao H.P., Shi W.J., “Pure quantitative characterization of finite projective special unitary groups”, Sci. China Ser. A-Math., 45:6 (2002), 761–772 | DOI | Zbl
[5] Chen G.Y., “On Thompson's conjecture”, J. Algebra, 185:1 (1996), 184–193 | DOI | Zbl
[6] Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A., Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | Zbl
[7] Herzog Marcel, “On the classification of finite simple groups by the number of involutions”, Proc. Am. Math. Soc., 77:3 (1979), 313–314 | DOI | Zbl
[8] Khosravi A., Khosravi B., “Two new characterizations for sporadic simple groups”, Pure Math. Appl., 16:3 (2005), 287–293 | Zbl
[9] Malinowska I.A., “Finite groups with few normalizers or involutions”, Arch. Math., 112:5 (2019), 459–465 | DOI | Zbl
[10] Moretó A., “The number of elements of prime order”, Monatsh. Math., 186:1 (2018), 189–195 | DOI | Zbl
[11] Robinson D.J.S., A course in the theory of groups, Springer-Verlag, NY; Heidelberg; Berlin, 1982, 481 pp. | Zbl
[12] Shi W.J., “A new characterization of the sporadic simple groups”, Group Theory, Proc. Singapore Group Theory Conf. 1987, Walter de Gruyter, Berlin; NY, 1989, 531–540
[13] Shi W.J., Bi J.X., “A characteristic property for each finite projective special linear group”, Groups-Canberra 1989, Lecture Notes in Mathematics, 1456, ed. Kovacs L.G., Springer, Berlin; Heidelberg, 1990, 171–180 | DOI
[14] Shi W.J., Bi J.X., “A characterization of Suzuki-Ree groups”, Sci. China, Ser. A, 34:1 (1991), 14–19 | Zbl
[15] Shi W.J., Bi J.X., “A new characterization of the alternating groups”, Southeast Asian Bull. Math., 16:1 (1992), 81–90 | Zbl
[16] Shi W.J., “The pure quantitative characterization of finite simple groups (I)”, Prog. Nat. Sci., 4 (1994), 316–326
[17] Thompson J.G., Personal communication, January 4, 1988
[18] Vasil'ev A.V., Grechkoseeva M.A., Mazurov V.D., “Characterization of the finite simple groups by spectrum and order”, Algebra Logic, 48:6 (2009), 385–409 | DOI | Zbl
[19] Williams J.S., “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | Zbl
[20] Xu M.C., Shi W.J., “Pure quantitative characterization of finite simple groups $^2D_n(q)$ and $D_l(q)$ ($l$ odd)”, Algebra Colloq., 10:3 (2003), 427–443 | Zbl
[21] Zarrin M., “A counterexample to Herzog's conjecture on the number of involutions”, Arch. Math., 111:4 (2018), 349–351 | DOI | Zbl
[22] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Sib. Elektron. Mat. Izv., 6 (2009), 1–12 | Zbl