On Some Conjectures Related to Quantitative Characterizations of Finite Nonabelian Simple Groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 269-275 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is based on the results of the 2020 Ural Workshop on Group Theory and Combinatorics. In this note we provide some counterexamples for the conjecture of Moretó on finite simple groups, which says that any finite simple group $G$ can be determined in terms of its order $|G|$ and the number of elements of order $p$, where $p$ the largest prime divisor of $|G|$. A new characterization of all sporadic simple groups and alternating groups is given. Some related conjectures are also discussed.
Keywords: finite simple groups; quantitative characterization; the largest prime divisor.
@article{TIMM_2021_27_4_a18,
     author = {J. Li and W. Shi},
     title = {On {Some} {Conjectures} {Related} to {Quantitative} {Characterizations} of {Finite} {Nonabelian} {Simple} {Groups}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {269--275},
     year = {2021},
     volume = {27},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a18/}
}
TY  - JOUR
AU  - J. Li
AU  - W. Shi
TI  - On Some Conjectures Related to Quantitative Characterizations of Finite Nonabelian Simple Groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 269
EP  - 275
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a18/
LA  - en
ID  - TIMM_2021_27_4_a18
ER  - 
%0 Journal Article
%A J. Li
%A W. Shi
%T On Some Conjectures Related to Quantitative Characterizations of Finite Nonabelian Simple Groups
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 269-275
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a18/
%G en
%F TIMM_2021_27_4_a18
J. Li; W. Shi. On Some Conjectures Related to Quantitative Characterizations of Finite Nonabelian Simple Groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 269-275. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a18/

[1] Anabanti C.S., “A counterexample to Zarrin's conjecture on sizes of finite nonabelian simple groups in relation to involution sizes”, Arch. Math., 112:3 (2019), 225–226 | DOI | Zbl

[2] Anabanti C.S., Hammer S., Okoli N.C., “An infinitude of counterexamples to Herzog's conjecture on involutions in simple groups”, Communications in Algebra, 49:4 (2021), 1415–1421 | DOI | Zbl

[3] Bi J.X., “Characterization of alternating groups by orders of normalizers of Sylow subgroups”, Algebra Colloq., 8:3 (2001), 249–256 | Zbl

[4] Cao H.P., Shi W.J., “Pure quantitative characterization of finite projective special unitary groups”, Sci. China Ser. A-Math., 45:6 (2002), 761–772 | DOI | Zbl

[5] Chen G.Y., “On Thompson's conjecture”, J. Algebra, 185:1 (1996), 184–193 | DOI | Zbl

[6] Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A., Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | Zbl

[7] Herzog Marcel, “On the classification of finite simple groups by the number of involutions”, Proc. Am. Math. Soc., 77:3 (1979), 313–314 | DOI | Zbl

[8] Khosravi A., Khosravi B., “Two new characterizations for sporadic simple groups”, Pure Math. Appl., 16:3 (2005), 287–293 | Zbl

[9] Malinowska I.A., “Finite groups with few normalizers or involutions”, Arch. Math., 112:5 (2019), 459–465 | DOI | Zbl

[10] Moretó A., “The number of elements of prime order”, Monatsh. Math., 186:1 (2018), 189–195 | DOI | Zbl

[11] Robinson D.J.S., A course in the theory of groups, Springer-Verlag, NY; Heidelberg; Berlin, 1982, 481 pp. | Zbl

[12] Shi W.J., “A new characterization of the sporadic simple groups”, Group Theory, Proc. Singapore Group Theory Conf. 1987, Walter de Gruyter, Berlin; NY, 1989, 531–540

[13] Shi W.J., Bi J.X., “A characteristic property for each finite projective special linear group”, Groups-Canberra 1989, Lecture Notes in Mathematics, 1456, ed. Kovacs L.G., Springer, Berlin; Heidelberg, 1990, 171–180 | DOI

[14] Shi W.J., Bi J.X., “A characterization of Suzuki-Ree groups”, Sci. China, Ser. A, 34:1 (1991), 14–19 | Zbl

[15] Shi W.J., Bi J.X., “A new characterization of the alternating groups”, Southeast Asian Bull. Math., 16:1 (1992), 81–90 | Zbl

[16] Shi W.J., “The pure quantitative characterization of finite simple groups (I)”, Prog. Nat. Sci., 4 (1994), 316–326

[17] Thompson J.G., Personal communication, January 4, 1988

[18] Vasil'ev A.V., Grechkoseeva M.A., Mazurov V.D., “Characterization of the finite simple groups by spectrum and order”, Algebra Logic, 48:6 (2009), 385–409 | DOI | Zbl

[19] Williams J.S., “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | Zbl

[20] Xu M.C., Shi W.J., “Pure quantitative characterization of finite simple groups $^2D_n(q)$ and $D_l(q)$ ($l$ odd)”, Algebra Colloq., 10:3 (2003), 427–443 | Zbl

[21] Zarrin M., “A counterexample to Herzog's conjecture on the number of involutions”, Arch. Math., 111:4 (2018), 349–351 | DOI | Zbl

[22] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Sib. Elektron. Mat. Izv., 6 (2009), 1–12 | Zbl