@article{TIMM_2021_27_4_a17,
author = {W. Guo and A. S. Kondrat'ev and N. V. Maslova},
title = {Recognition of the {Group} $E_6(2)$ by {Gruenberg-Kegel} {Graph}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {263--268},
year = {2021},
volume = {27},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a17/}
}
TY - JOUR AU - W. Guo AU - A. S. Kondrat'ev AU - N. V. Maslova TI - Recognition of the Group $E_6(2)$ by Gruenberg-Kegel Graph JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 263 EP - 268 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a17/ LA - en ID - TIMM_2021_27_4_a17 ER -
W. Guo; A. S. Kondrat'ev; N. V. Maslova. Recognition of the Group $E_6(2)$ by Gruenberg-Kegel Graph. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 263-268. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a17/
[1] Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A., Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | Zbl
[2] Gerono G.C., “Note sur la resolution en nombres entiers et positifs del'equation $x^m=y^n+1$”, Nouv. Ann. Math.(2), 9 (1870), 469–471
[3] Gorenstein D., Finite groups, Harper and Row, New York, 1968, 642 pp. | Zbl
[4] Gorenstein D., Lyons R., Solomon R., The classication of the finite simple groups, Number 3. Part I, Math. Surveys Monogr., 40, no. 3, Amer. Math. Soc., Providence, RI, 1998, 420 pp.
[5] Iiyori N., Yamaki H., “Prime graph components of the simple groups of Lie type over the fields of even characteristic”, J. Algebra, 155:2 (1993), 335–343 ; corrigenda, J. Algebra, 181:2 (1996), 659 | DOI | Zbl | DOI | Zbl
[6] Jansen C., Lux K., Parker R., Wilson R., An atlas of Brauer characters, Clarendon Press, Oxford, 1995, 327 pp. | Zbl
[7] Kondrat'ev A.S., “Prime graph components of finite simple groups”, Math. USSR Sb., 67:1 (1990), 235–247 | DOI
[8] Kondrat'ev A.S., Mazurov V.D., “Recognition of alternating groups of prime degree from the orders of their elements”, Siberian. Math. J., 41:2 (2000), 294–302 | DOI
[9] Mazurov V.D., “The set of orders of elements in a finite group”, Algebra and Logic, 33:1 (1994), 49–55 | DOI | Zbl
[10] Vasil'ev A.V., Gorshkov I.B., “On recognition of finite simple groups with connected prime graph”, Siberian Math. J., 50:2 (2009), 233–238 | DOI | Zbl
[11] Vasil'ev A.V., Vdovin E.P., “An adjacency criterion for the prime graph of a finite simple group”, Algebra and Logic, 44:6 (2005), 381–406 | DOI | Zbl
[12] Vasil'ev A.V., Vdovin E.P., “Cocliques of maximal size in the prime graph of a finite simple group”, Algebra and Logic, 50:4 (2011), 291–322 | DOI | Zbl
[13] Williams J. S., “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | Zbl
[14] Zavarnitsine A.V., “Finite groups with a five-component prime graph”, Siberian Math. J., 54:1 (2013), 40–46 | DOI | Zbl
[15] Zsigmondy K., “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3:1 (1892), 265–284 | DOI | Zbl