Subbotin's splines in the problem of extremal interpolation in the space $L_p$ for second-order linear differential operators
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 255-262
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For second-order linear differential operators $\mathcal L_2(D)$ of the form $D^2$, $D^2+\alpha^2$, $D^2-\beta^2$ $(\alpha,\beta>0)$, the Yanenko–Stechkin–Subbotin problem of extremal interpolation of numerical sequences by twice differentiable functions $f$ with the smallest value of the norm of the function $\mathcal L_2(D)f$ in the space $L_p$ $(1\le p\le \infty)$ is considered on a grid of nodes of the numerical axis that is infinite in both directions. Subbotin's parabolic splines and their analogs for the operators $D^2+\alpha^2$ and $D^2-\beta^2$ (with knots lying in the middle between consecutive interpolation nodes) are used to derive upper bounds for the values of the smallest norm in terms of grid steps for any value of $p$, $1\le p\le \infty$.
Keywords: Subbotin's splines, infinite grid, second-order differential operator.
Mots-clés : interpolation
@article{TIMM_2021_27_4_a16,
     author = {V. T. Shevaldin},
     title = {Subbotin's splines in the problem of extremal interpolation in the space $L_p$ for second-order linear differential operators},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {255--262},
     year = {2021},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a16/}
}
TY  - JOUR
AU  - V. T. Shevaldin
TI  - Subbotin's splines in the problem of extremal interpolation in the space $L_p$ for second-order linear differential operators
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 255
EP  - 262
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a16/
LA  - ru
ID  - TIMM_2021_27_4_a16
ER  - 
%0 Journal Article
%A V. T. Shevaldin
%T Subbotin's splines in the problem of extremal interpolation in the space $L_p$ for second-order linear differential operators
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 255-262
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a16/
%G ru
%F TIMM_2021_27_4_a16
V. T. Shevaldin. Subbotin's splines in the problem of extremal interpolation in the space $L_p$ for second-order linear differential operators. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 255-262. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a16/

[1] Gelfond A.O., Ischislenie konechnykh raznostei, Nauka, M., 1967, 376 pp.

[2] Subbotin Yu.N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. MIAN SSSR, 78 (1965), 24–42 | Zbl

[3] Subbotin Yu.N., “Funktsionalnaya interpolyatsiya v srednem s naimenshei n-i proizvodnoi”, Tr. MIAN SSSR, 88 (1967), 30–60 | Zbl

[4] Stechkin S.B., Subbotin Yu.N., Splainy v vychislitelnoi matematike, Nauka, M., 1976, 248 pp.

[5] Shevaldina E.V., “Approksimatsiya lokalnymi eksponentsialnymi splainami s proizvolnymi uzlami”, Sib. zhurn. vychisl. matem., 9:4 (2006), 391–402 | Zbl

[6] Sharma A., Tsimbalario I., “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Matem. zametki, 21:2 (1977), 161–173

[7] Shevaldin V.T., “Ob odnoi zadache ekstremalnoi interpolyatsii”, Matem. zametki, 29:4 (1981), 603–622 | Zbl

[8] Shevaldin V.T., “Nekotorye zadachi ekstremalnoi interpolyatsii v srednem dlya lineinykh differentsialnykh operatorov”, Tr. MIAN SSSR, 164 (1983), 203–240 | Zbl