On the best simultaneous polynomial approximation of functions and their derivatives in Hardy spaces
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 239-254 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we solve extremal problems related to the best simultaneous polynomial approximation of functions analytic in the unit disk and belonging to the Hardy space $\mathscr{H}_2$. The problem of simultaneous approximation of periodic functions by trigonometric polynomials was considered by A. L. Garkavi in 1960. Then, in the same year, A. F. Timan considered this problem for classes of entire functions defined on the axis. We establish a number of exact theorems and calculate the exact values of the least upper bounds of the best simultaneous approximations of a function and its successive derivatives by polynomials and their corresponding derivatives on some classes of complex functions belonging to the Hardy space $\mathscr{H}_2$.
Keywords: best simultaneous approximation, analytic function, unit disk, modulus of continuity, extremal problem, angular boundary value
Mots-clés : polynomial.
@article{TIMM_2021_27_4_a15,
     author = {M. Sh. Shabozov and G. A. Yusupov and J. J. Zargarov},
     title = {On the best simultaneous polynomial approximation of functions and their derivatives in {Hardy} spaces},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {239--254},
     year = {2021},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a15/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - G. A. Yusupov
AU  - J. J. Zargarov
TI  - On the best simultaneous polynomial approximation of functions and their derivatives in Hardy spaces
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 239
EP  - 254
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a15/
LA  - ru
ID  - TIMM_2021_27_4_a15
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A G. A. Yusupov
%A J. J. Zargarov
%T On the best simultaneous polynomial approximation of functions and their derivatives in Hardy spaces
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 239-254
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a15/
%G ru
%F TIMM_2021_27_4_a15
M. Sh. Shabozov; G. A. Yusupov; J. J. Zargarov. On the best simultaneous polynomial approximation of functions and their derivatives in Hardy spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 239-254. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a15/

[1] Babenko K.I., “O nailuchshikh priblizheniyakh odnogo klassa analiticheskikh funktsii”, Izv. AN SSSR. Ser. matematicheskaya, 22:5 (1958), 631–640 | Zbl

[2] Scheick J.T., “Polynomial approximation of functions analytic in a disk”, Proc. Amer. Math. Soc., 17 (1966), 1238–1243 | DOI | Zbl

[3] Belyi V.I., “K voprosu o nailuchshikh lineinykh metodakh priblizheniya funktsii, analiticheskikh v edinichnom kruge”, Ukr. mat. zhurn., 19:2 (1967), 104–109

[4] Belyi V.I., Dveirin M.Z., “O nailuchshikh lineinykh metodakh priblizheniya na klassakh funktsii, opredelyaemykh soyuznymi yadrami”, Metricheskie voprosy teorii funktsii i otobrazhenii, no. 2, Naukova dumka, Kiev, 1971, 37–54

[5] Dveirin M.Z., “O priblizhenii funktsii, analiticheskikh v edinichnom kruge”, Metricheskie voprosy teorii funktsii i otobrazhenii, no. 6, Naukova dumka, Kiev, 1975, 41–54

[6] Dveirin M.Z., “Poperechniki i $\varepsilon$-entropiya klassov funktsii, analiticheskikh v edinichnom kruge funktsii”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya: respubl. nauch. sb., no. 23, Izd-vo Kharkovskogo un-ta, Kharkov, 1975, 32–46

[7] Tikhomirov V.M., “Poperechniki mnozhestv v funktsionalnykh prostranstvakh i teoriya nailuchshikh priblizhenii”, Uspekhi mat. nauk, 15:3(93) (1960), 81–120 | Zbl

[8] Tikhomirov V.M., Nekotorye voprosy teorii priblizhenii, Mosk. gos. un-t, M., 1976, 304 pp.

[9] Taikov L.V., “O nailuchshem priblizhenii v srednem nekotorykh klassov analiticheskikh funktsii”, Mat. zametki, 1:2 (1967), 155–162 | Zbl

[10] Ainulloev N., Taikov L.V., “Nailuchshie priblizheniya v smysle A.N. Kolmogorova klassov analiticheskikh v edinichnom kruge funktsii”, Mat. zametki, 40:3 (1986), 341–351

[11] Taikov L.V., “Poperechniki nekotorykh klassov analiticheskikh funktsii”, Mat. zametki, 22:2 (1977), 285–295 | Zbl

[12] Shabozov M.Sh., Shabozov O.Sh., “Poperechniki nekotorykh klassov analiticheskikh funktsii v prostranstve $H_2$”, Mat. zametki, 68:5 (2000), 796–800 | Zbl

[13] Shabozov M.Sh., Yusupov G.A., “Nailuchshee priblizhenie i znacheniya poperechnikov nekotorykh klassov analiticheskikh funktsii”, Dokl. RAN, 382:6 (2002), 747–749 | Zbl

[14] Shabozov M.Sh., Yusupov G.A., “Nailuchshie metody priblizheniya i znacheniya poperechnikov nekotorykh klassov funktsii v prostranstve $H_{q,\rho}$, $1\le q\le\infty$, $0\rho\le1$”, Sib. mat. zhurn., 57:2 (2016), 469–478 | Zbl

[15] Garkavi A.L., “O sovmestnom priblizhenii periodicheskoi funktsii i ee proizvodnykh trigonometricheskimi polinomami”, Izv. AN SSSR. Ser. matematicheskaya, 24:1 (1960), 103–128 | Zbl

[16] Timan A.F., “K voprosu ob odnovremennoi approksimatsii funktsii i ikh proizvodnykh na vsei chislovoi osi”, Izv. AN SSSR. Ser. matematicheskaya, 24:3 (1960), 421–430 | Zbl

[17] Kusis P., Vvedenie v teoriyu prostranstv $H^p$, Mir, M., 1984, 256 pp.

[18] Privalov I.I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M., 1950, 336 pp.

[19] Smirnov V.I., Lebedev N.A., Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Mir, M.; L., 1964, 440 pp.

[20] Vakarchuk S.B., Vakarchuk M.B., “Neravenstva tipa Kolmogorova dlya analiticheskikh funktsii odnoi i dvukh kompleksnykh peremennykh i ikh prilozhenie k teorii approksimatsii”, Ukr. mat. zhurn., 63:12 (2011), 1579–1601

[21] Vakarchuk S.B., Zabutnaya V.I., “Tochnoe neravenstvo tipa Dzheksona - Stechkina v $L_2$ i poperechniki funktsionalnykh klassov”, Mat. zametki, 86:3 (2009), 328–336 | Zbl