Divergent series in the Fourier method for the wave equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 215-238

Voir la notice de l'article provenant de la source Math-Net.Ru

Series of formal solutions of two mixed problems for the wave equation are studied by a method based on the application of divergent series in the sense of Euler. The validity of this method is proved. The method is very economical in the use of well-known mathematical facts, which opens up the prospect of significant progress in the study of boundary value problems for partial differential equations.
Keywords: Fourier method, mixed problem, wave equation, resolvent.
Mots-clés : divergent series
@article{TIMM_2021_27_4_a14,
     author = {A. P. Khromov and V. V. Kornev},
     title = {Divergent series in the {Fourier} method for the wave equation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {215--238},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a14/}
}
TY  - JOUR
AU  - A. P. Khromov
AU  - V. V. Kornev
TI  - Divergent series in the Fourier method for the wave equation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 215
EP  - 238
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a14/
LA  - ru
ID  - TIMM_2021_27_4_a14
ER  - 
%0 Journal Article
%A A. P. Khromov
%A V. V. Kornev
%T Divergent series in the Fourier method for the wave equation
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 215-238
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a14/
%G ru
%F TIMM_2021_27_4_a14
A. P. Khromov; V. V. Kornev. Divergent series in the Fourier method for the wave equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 215-238. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a14/