Divergent series in the Fourier method for the wave equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 215-238
Voir la notice de l'article provenant de la source Math-Net.Ru
Series of formal solutions of two mixed problems for the wave equation are studied by a method based on the application of divergent series in the sense of Euler. The validity of this method is proved. The method is very economical in the use of well-known mathematical facts, which opens up the prospect of significant progress in the study of boundary value problems for partial differential equations.
Keywords:
Fourier method, mixed problem, wave equation, resolvent.
Mots-clés : divergent series
Mots-clés : divergent series
@article{TIMM_2021_27_4_a14,
author = {A. P. Khromov and V. V. Kornev},
title = {Divergent series in the {Fourier} method for the wave equation},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {215--238},
publisher = {mathdoc},
volume = {27},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a14/}
}
TY - JOUR AU - A. P. Khromov AU - V. V. Kornev TI - Divergent series in the Fourier method for the wave equation JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 215 EP - 238 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a14/ LA - ru ID - TIMM_2021_27_4_a14 ER -
A. P. Khromov; V. V. Kornev. Divergent series in the Fourier method for the wave equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 215-238. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a14/