Mots-clés : divergent series
@article{TIMM_2021_27_4_a14,
author = {A. P. Khromov and V. V. Kornev},
title = {Divergent series in the {Fourier} method for the wave equation},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {215--238},
year = {2021},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a14/}
}
A. P. Khromov; V. V. Kornev. Divergent series in the Fourier method for the wave equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 215-238. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a14/
[1] Steklov V.A., Osnovnye zadachi matematicheskoi fiziki, Nauka, M., 1983, 432 pp.
[2] Krylov A.N., O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh, GITTL, M.; L., 1950, 368 pp.
[3] Chernyatin V.A., Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh, Izd-vo Mosk. un-ta, M., 1991, 112 pp.
[4] Burlutskaya M.Sh., Khromov A.P., “Rezolventnyi podkhod v metode Fure”, Dokl. RAN, 458:2 (2014), 138–140 | DOI | Zbl
[5] Burlutskaya M.Sh., Khromov A.P., “Rezolventnyi podkhod dlya volnovogo uravneniya”, Zhurn. vychisl. matematiki i mat. fiziki, 55:2 (2015), 229–241 | DOI | Zbl
[6] Khromov A.P., “Povedenie formalnogo resheniya smeshannoi zadachi dlya volnovogo uravneniya”, Zhurn. vychisl. matematiki i mat. fiziki, 56:2 (2016), 239–251 | DOI | Zbl
[7] Khromov A.P., “O skhodimosti formalnogo resheniya po metodu Fure volnovogo uravneniya s summiruemym potentsialom”, Zhurn. vychisl. matematiki i mat. fiziki, 56:10 (2016), 1795–1809 | DOI | Zbl
[8] Kornev V.V., Khromov A.P., “Rezolventnyi podkhod v metode Fure dlya volnovogo uravneniya v nesamosopryazhennom sluchae”, Zhurn. vychisl. matematiki i mat. fiziki, 55:7 (2015), 1156–1167 | DOI | Zbl
[9] Kornev V.V., Khromov A.P., “Rezolventnyi podkhod k metodu Fure v smeshannoi zadache dlya neodnorodnogo volnovogo uravneniya”, Izv. Saratovskogo un-ta. Novaya cer. Ser. Matematika. Mekhanika. Informatika, 16:4 (2016), 403–413 | DOI
[10] Khromov A.P., “Klassicheskoe reshenie metodom Fure smeshannoi zadachi”: A. P. Khromov, S. F. Lukomskii, S. P. Sidorov, P. A. Terekhin, Novye metody approksimatsii v zadachakh deistvitelnogo analiza i spektralnoi teorii, Izd-vo Sarat. un-ta, Saratov, 2015, 6–94
[11] Khromov A.P., “Neobkhodimye i dostatochnye usloviya suschestvovaniya klassicheskogo resheniya smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya v sluchae summiruemogo potentsiala”, Differents. uravneniya, 55:5 (2019), 717–731 | DOI | Zbl
[12] Khromov A.P., Kornev V.V., “Klassicheskoe i obobschennye resheniya smeshannoi zadachi dlya neodnorodnogo volnovogo uravneniya”, Zhurn. vychisl. matematiki i mat. fiziki, 59:2 (2019), 286–300 | DOI | Zbl
[13] Eiler L., Differentsialnoe ischislenie, GITTL, M.; L., 1949, 580 pp.
[14] Khardi G., Raskhodyaschiesya ryady, IL, M., 1951, 504 pp.
[15] Khromov A.P., “Raskhodyaschiesya ryady i funktsionalnye uravneniya, svyazannye s analogami geometricheskoi progressii”, Sovremennye metody teorii kraevykh zadach, Voronezhskaya vesen. mat. shk. “Pontryaginskie chteniya - XXX”, materialy Mezhdunar. nauch. konf. (Voronezh, 3-9 maya 2019), Izd-vo ID VGU, Voronezh, 2019, 291–300
[16] Khromov A.P., “O klassicheskom reshenii smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya s zakreplennymi kontsami i nulevoi nachalnoi skorostyu”, Izv. Saratovskogo un-ta. Novaya. cer. Ser. Matematika. Mekhanika. Informatika, 19:3 (2019), 280–288 | DOI | Zbl
[17] Khromov A.P., “Raskhodyaschiesya ryady i smeshannaya zadacha dlya volnovogo uravneniya”, Matematika. Mekhanika: sb. nauch. tr., 21, Izd-vo Sarat. un-ta, Saratov, 2019, 62–67
[18] Khromov A.P., “Raskhodyaschiesya ryady i metod Fure dlya volnovogo uravneniya”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Sarat. zimn. shk., materialy Mezhdunar. nauch. konf. (Saratov, 28 yanv.-1 fevr. 2020), Izd-vo “Nauchnaya kniga”, Saratov, 2020, 433–439
[19] Kornev V.V., Kurdyumov V.P., Khromov A.P., “Smeshannaya zadacha dlya volnovogo uravneniya s granichnymi usloviyami, soderzhaschimi proizvodnye”, Sovremennye metody teorii funktsii i smezhnye problemy, Voronezh. zimn. mat. shk., materialy Mezhdunar. nauch. konf. (Voronezh, 28 yanv.-2 fevr. 2021), Izd-vo ID VGU, Voronezh, 2021, 148–152
[20] Belova D.V., Burlutskaya M.Sh., “O smeshannoi zadache dlya volnovogo uravneniya na grafe”, Sovremennye metody teorii funktsii i smezhnye problemy, Voronezh. zimn. mat. shk., materialy Mezhdunar. nauch. konf. (Voronezh, 28 yanv.-2 fevr. 2021), Izd-vo ID VGU, Voronezh, 2021, 52–54
[21] Rasulov M.A., Metod konturnogo integrala i ego primenenie k issledovaniyu zadach dlya differentsialnykh uravnenii, Nauka, M., 1964, 462 pp.
[22] Vagabov A.I., Vvedenie v spektralnuyu teoriyu differentsialnykh operatorov, Izd-vo Rostov. un-ta, Rostov na Donu, 1994, 160 pp.
[23] Levitan B.M., Operatory obobschennogo sdviga i nekotorye ikh primeneniya, Fizmatgiz, M., 1962, 323 pp.