@article{TIMM_2021_27_4_a13,
author = {D. V. Khlopin},
title = {A {Differential} {Game} with the {Possibility} of {Early} {Termination}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {189--214},
year = {2021},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a13/}
}
D. V. Khlopin. A Differential Game with the Possibility of Early Termination. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 189-214. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a13/
[1] Amir R., Evstigneev I.V., Schenk-Hoppe K.R., “Asset market games of survival: a synthesis of evolutionary and dynamic games”, Annals of Finance, 9:2 (2013), 121–144 | DOI | Zbl
[2] Averboukh, Y., “Approximate solutions of continuous-time stochastic games”, SIAM J. Control Optim., 54:5 (2016), 2629–2649 | DOI | Zbl
[3] Averboukh, Y., “Approximate Public-Signal Correlated Equilibria For Nonzero-Sum Differential Games”, SIAM J. Control Optim., 57:1 (2019), 743–772 | DOI | Zbl
[4] Basu A., Stettner L., “Zero-sum Markov games with impulse controls”, SIAM J. Control Optim., 58:1 (2020), 580–604 | DOI | Zbl
[5] Bensoussan, A., Friedman, A., “Nonlinear variational inequalities and differential games with stopping times”, J. Functional Analysis, 16:3 (1974), 305–352 | DOI | Zbl
[6] Bensoussan, A., Friedman, A., “Nonzero-sum stochastic differential games with stopping times and free boundary problems”, Trans. Amer. Math. Soc., 231:2 (1977), 275–327 | DOI | Zbl
[7] Bielecki T. R., Crepey, S., Jeanblanc M., Rutkowski M., “Arbitrage pricing of defaultable game options with applications to convertible bonds”, Quantitative Finance, 8:8 (2008), 795–810 | DOI | Zbl
[8] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp.
[9] Borovkov A.A., Teoriya veroyatnostei, URSS, M., 1999, 470 pp.
[10] Dynkin E.B., “Igrovoi variant zadachi ob optimalnoi ostanovke”, Dokl. AN SSSR, 185:1 (1969), 16–19 | Zbl
[11] Ekström E., Peskir G., “Optimal stopping games for Markov processes”, SIAM J. Control Optim., 47:2 (2008), 684–702 | DOI | Zbl
[12] Gensbittel F., Grün C., “Zero-sum stopping games with asymmetric information”, Math. Oper. Research, 44:1 (2019), 277–302 | DOI | Zbl
[13] Gromova E., Malakhova A., Palestini A., “Payoff Distribution in a Multi-Company Extraction Game with Uncertain Duration”, Mathematics, 6:9 (2018), 165 | DOI | Zbl
[14] Guo X, Hernandez-Lerma O., “Zero-sum continuous-time Markov games with unbounded transition and discounted payoff rates”, Bernoulli, 11:6 (2005), 1009–1029 | DOI | Zbl
[15] Hamadene S., “Mixed zero-sum stochastic differential game and American game options”, SIAM J. Control Optim., 45:2 (2006), 496–518 | DOI
[16] Kolokoltsov V.N., Markov processes, semigroups and generators, Ser. De Gruyter Studies in Mathematics, 38, De Gryuter, Berlin, 2011, 430 pp.
[17] Krasovskii N.N., “Igra sblizheniya-ukloneniya so stokhasticheskim povodyrem”, Dokl. AN SSSR, 237:5 (1977), 1020–1023 | Zbl
[18] Krasovskii N.N., Kotelnikova A.N., “O differentsialnoi igre na perekhvat”, Tr. MIAN, 268 (2010), 168–214 | DOI | Zbl
[19] Krasovskii N.N., Kotelnikova A.N., “Stokhasticheskii povodyr dlya ob'ekta s posledeistviem v pozitsionnoi differentsialnoi igre”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:2 (2011), 97–104
[20] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp.
[21] Krasovskii N.N., Subbotin A.I., Game-theoretical control problems, Springer, NY, 1988, 517 pp. | Zbl
[22] Laraki R., Solan E., “The value of zero-sum stopping games in continuous time”, SIAM J. Control Optim., 43:5 (2005), 1913–1922 | DOI | Zbl
[23] Marin-Solano J., Shevkoplyas E., “Non-constant discounting and differential games with random time horizon”, Automatica, 47:12 (2011), 2626–2638 | DOI | Zbl
[24] Mazalov V. V., “Dynamic games with optimal stopping”, Game theory and Applications, v. 2, eds. L.A. Petrosjan and V.V. Mazalov, Nova Science Publ., NY, 1996, 37–46
[25] Meier P.-A., Veroyatnost i potentsialy, Mir, M., 1973, 324 pp.
[26] Neyman, A., “Continuous-time stochastic games”, Games and Economic Behavior, 104 (2017), 92–130 | DOI | Zbl
[27] Prieto-Rumeau T., Hernandez-Lerma O., Selected topics on continuous-time controlled Markov chains and Markov games, ICP Advanced Texts in Math., 5, Imperial College Press, London, 2012, 279 pp. | DOI
[28] Rockafellar R. T., Wets R. J. B., Variational analysis, A Series of Comprehensive Studies in Math., 317, Springer-Verlag, Berlin, 2009, 734 pp.
[29] Sorin S., Vigeral G., “Reversibility and oscillations in zero-sum discounted stochastic games”, J. Dyn. Games, 2:1 (2015), 103–115 | DOI | Zbl
[30] Subbotin A.I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, Institut kompyuternykh issledovanii, M.; Izhevsk, 2003, 336 pp.