A Differential Game with the Possibility of Early Termination
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 189-214 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a zero-sum differential game on a finite interval, in which the players not only control the system's trajectory but also influence the terminal time of the game. It is assumed that the early terminal time is an absolutely continuous random variable, and its density is given by bounded measurable functions of time assigned by both players (the intensities of the influence of each player on the termination of the game). The payoff function may depend both on the terminal time of the game together with the position of the system at this time and on the player who initiates the termination. The strategies are formalized by using nonanticipating càdlàg processes. The existence of the game value is shown under the Isaacs condition. For this, the original game is approximated by an auxiliary game based on a continuous-time Markov chain, which depends on the controls and intensities of the players. Based on the strategies optimal in this Markov game, a control procedure with a stochastic guide is proposed for the original game. It is shown that, under an unlimited increase in the number of points in the Markov game, this procedure leads to a near-optimal strategy in the original game.
Keywords: two-person zero-sum game, Dynkin game, differential game, stochastic guide, extremal shift, continuous-time Markov chain.
@article{TIMM_2021_27_4_a13,
     author = {D. V. Khlopin},
     title = {A {Differential} {Game} with the {Possibility} of {Early} {Termination}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {189--214},
     year = {2021},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a13/}
}
TY  - JOUR
AU  - D. V. Khlopin
TI  - A Differential Game with the Possibility of Early Termination
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 189
EP  - 214
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a13/
LA  - ru
ID  - TIMM_2021_27_4_a13
ER  - 
%0 Journal Article
%A D. V. Khlopin
%T A Differential Game with the Possibility of Early Termination
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 189-214
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a13/
%G ru
%F TIMM_2021_27_4_a13
D. V. Khlopin. A Differential Game with the Possibility of Early Termination. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 189-214. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a13/

[1] Amir R., Evstigneev I.V., Schenk-Hoppe K.R., “Asset market games of survival: a synthesis of evolutionary and dynamic games”, Annals of Finance, 9:2 (2013), 121–144 | DOI | Zbl

[2] Averboukh, Y., “Approximate solutions of continuous-time stochastic games”, SIAM J. Control Optim., 54:5 (2016), 2629–2649 | DOI | Zbl

[3] Averboukh, Y., “Approximate Public-Signal Correlated Equilibria For Nonzero-Sum Differential Games”, SIAM J. Control Optim., 57:1 (2019), 743–772 | DOI | Zbl

[4] Basu A., Stettner L., “Zero-sum Markov games with impulse controls”, SIAM J. Control Optim., 58:1 (2020), 580–604 | DOI | Zbl

[5] Bensoussan, A., Friedman, A., “Nonlinear variational inequalities and differential games with stopping times”, J. Functional Analysis, 16:3 (1974), 305–352 | DOI | Zbl

[6] Bensoussan, A., Friedman, A., “Nonzero-sum stochastic differential games with stopping times and free boundary problems”, Trans. Amer. Math. Soc., 231:2 (1977), 275–327 | DOI | Zbl

[7] Bielecki T. R., Crepey, S., Jeanblanc M., Rutkowski M., “Arbitrage pricing of defaultable game options with applications to convertible bonds”, Quantitative Finance, 8:8 (2008), 795–810 | DOI | Zbl

[8] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp.

[9] Borovkov A.A., Teoriya veroyatnostei, URSS, M., 1999, 470 pp.

[10] Dynkin E.B., “Igrovoi variant zadachi ob optimalnoi ostanovke”, Dokl. AN SSSR, 185:1 (1969), 16–19 | Zbl

[11] Ekström E., Peskir G., “Optimal stopping games for Markov processes”, SIAM J. Control Optim., 47:2 (2008), 684–702 | DOI | Zbl

[12] Gensbittel F., Grün C., “Zero-sum stopping games with asymmetric information”, Math. Oper. Research, 44:1 (2019), 277–302 | DOI | Zbl

[13] Gromova E., Malakhova A., Palestini A., “Payoff Distribution in a Multi-Company Extraction Game with Uncertain Duration”, Mathematics, 6:9 (2018), 165 | DOI | Zbl

[14] Guo X, Hernandez-Lerma O., “Zero-sum continuous-time Markov games with unbounded transition and discounted payoff rates”, Bernoulli, 11:6 (2005), 1009–1029 | DOI | Zbl

[15] Hamadene S., “Mixed zero-sum stochastic differential game and American game options”, SIAM J. Control Optim., 45:2 (2006), 496–518 | DOI

[16] Kolokoltsov V.N., Markov processes, semigroups and generators, Ser. De Gruyter Studies in Mathematics, 38, De Gryuter, Berlin, 2011, 430 pp.

[17] Krasovskii N.N., “Igra sblizheniya-ukloneniya so stokhasticheskim povodyrem”, Dokl. AN SSSR, 237:5 (1977), 1020–1023 | Zbl

[18] Krasovskii N.N., Kotelnikova A.N., “O differentsialnoi igre na perekhvat”, Tr. MIAN, 268 (2010), 168–214 | DOI | Zbl

[19] Krasovskii N.N., Kotelnikova A.N., “Stokhasticheskii povodyr dlya ob'ekta s posledeistviem v pozitsionnoi differentsialnoi igre”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:2 (2011), 97–104

[20] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp.

[21] Krasovskii N.N., Subbotin A.I., Game-theoretical control problems, Springer, NY, 1988, 517 pp. | Zbl

[22] Laraki R., Solan E., “The value of zero-sum stopping games in continuous time”, SIAM J. Control Optim., 43:5 (2005), 1913–1922 | DOI | Zbl

[23] Marin-Solano J., Shevkoplyas E., “Non-constant discounting and differential games with random time horizon”, Automatica, 47:12 (2011), 2626–2638 | DOI | Zbl

[24] Mazalov V. V., “Dynamic games with optimal stopping”, Game theory and Applications, v. 2, eds. L.A. Petrosjan and V.V. Mazalov, Nova Science Publ., NY, 1996, 37–46

[25] Meier P.-A., Veroyatnost i potentsialy, Mir, M., 1973, 324 pp.

[26] Neyman, A., “Continuous-time stochastic games”, Games and Economic Behavior, 104 (2017), 92–130 | DOI | Zbl

[27] Prieto-Rumeau T., Hernandez-Lerma O., Selected topics on continuous-time controlled Markov chains and Markov games, ICP Advanced Texts in Math., 5, Imperial College Press, London, 2012, 279 pp. | DOI

[28] Rockafellar R. T., Wets R. J. B., Variational analysis, A Series of Comprehensive Studies in Math., 317, Springer-Verlag, Berlin, 2009, 734 pp.

[29] Sorin S., Vigeral G., “Reversibility and oscillations in zero-sum discounted stochastic games”, J. Dyn. Games, 2:1 (2015), 103–115 | DOI | Zbl

[30] Subbotin A.I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, Institut kompyuternykh issledovanii, M.; Izhevsk, 2003, 336 pp.