Mots-clés : polynomial Volterra equations
@article{TIMM_2021_27_4_a11,
author = {S. V. Solodusha and E. Yu. Grazhdantseva},
title = {Test polynomial {Volterra} equation of the first kind in the problem of input signal identification},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {161--174},
year = {2021},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a11/}
}
TY - JOUR AU - S. V. Solodusha AU - E. Yu. Grazhdantseva TI - Test polynomial Volterra equation of the first kind in the problem of input signal identification JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 161 EP - 174 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a11/ LA - ru ID - TIMM_2021_27_4_a11 ER -
%0 Journal Article %A S. V. Solodusha %A E. Yu. Grazhdantseva %T Test polynomial Volterra equation of the first kind in the problem of input signal identification %J Trudy Instituta matematiki i mehaniki %D 2021 %P 161-174 %V 27 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a11/ %G ru %F TIMM_2021_27_4_a11
S. V. Solodusha; E. Yu. Grazhdantseva. Test polynomial Volterra equation of the first kind in the problem of input signal identification. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 161-174. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a11/
[1] Tsalyuk Z.B., “Integralnye uravneniya Volterra”, Itogi nauki i tekhniki. Ser. Mat. analiz, 15 (1977), 131–198 | Zbl
[2] Brunner H., Volterra integral equations: an introduction to theory and applications, Cambridge University Press, Cambridge, 2017, 387 pp. | DOI | Zbl
[3] Volterra V., Teoriya funktsionalov, integralnykh i integro-differentsialnykh uravnenii, Nauka, M., 1982, 302 pp.
[4] Boyd S., Chua L.O., Desoer C.A., “Analytical foundations of Volterra series”, IMA J. Math. Control Inform., 1:3 (1984), 243–282 | DOI | Zbl
[5] Schetzen M., “Nonlinear system modelling and analysis from the Volterra and Wiener perspective”, Block-Oriented Nonlinear System Identification, Ser. Lecture Notes in Control and Information Sciences, 404, eds. F. Giri, E-W. Bai., Springer, London, 2010, 13–26 | DOI
[6] Cheng C.M., Peng Z.K., Zhang W.M., Meng G., “Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review”, Mechanical Systems and Signal Processing, 87 (2017), 340–364 | DOI
[7] Liu Q., Xie M., Lim M.-K., “Volterra series models for nonlinear system control”, Proc. 32nd ISR (ISR 2001) - International Symposium on Robotics, 2001, 1386–1391
[8] Apartsin A.S., Neklassicheskie uravneniya Volterra I roda v integralnykh modelyakh dinamicheskikh sistem: teoriya, chislennye metody, prilozheniya, dis. ...d-r fiz.-mat. nauk, Irkut. gos. un-t, Irkutsk, 2000, 319 pp.
[9] Venikov V.A., Sukhanov O.A., Guseinov A.F., “Funktsionalnoe predstavlenie podsistem v kiberneticheskom modelirovanii”, Kibernetika elektroenergeticheskikh sistem, trudy seminara, v. 2, Bryansk, 1974, 39–46
[10] Galin N.M., Zyabirov F.I., “Metod resheniya nelineinykh zadach teploobmena s primeneniem funktsionalnykh ryadov Volterra”, Gidrodinamika i teploobmen v odnofaznykh i dvukhfaznykh potokakh, sb. statei, Izd-vo MEI, M., 1987, 34–48
[11] Bhatt D., Sharma S.N., Volterra model-based control for nonlinear systems via Carleman linearization, Preprint, 2021, 23 pp., arXiv: math.2101.00495
[12] Apartsin A.S., Solodusha S.V., “Ob optimizatsii amplitud testovykh signalov pri identifikatsii yader Volterra”, Avtomatika i telemekhanika, 2004, no. 3, 116–124 | Zbl
[13] Apartsin A.S., Neklassicheskie uravneniya Volterra I roda: teoriya i chislennye metody, Nauka, Novosibirsk, 1999, 193 pp.
[14] Tekhnicheskaya kibernetika. Teoriya avtomaticheskogo regulirovaniya. Teoriya nestatsionarnykh, nelineinykh i samonastraivayuschikhsya sistem avtomaticheskogo regulirovaniya, v. II, ed. red. V.V. Solodovnikova, Mashinostroenie, M., 1969, 368 pp.
[15] Apartsin A.S., “Ob ekvivalentnykh normakh v teorii polinomialnykh integralnykh uravnenii Volterra I roda”, Izv. Irkut. gos. un-ta. Ser. Matematika, 3:1 (2010), 19–29 | Zbl
[16] Apartsin A.S., “O polilineinykh uravneniyakh Volterra I roda”, Avtomatika i telemekhanika, 2004, no. 2, 118–125 | Zbl
[17] Belbas S.A., Bulka Yu., “Numerical solution of multiple nonlinear Volterra integral equations”, Appl. Math. Comp., 217:9 (2011), 4791–4804 | DOI | Zbl
[18] Burt P.M.S., Goulart J.H. de M., “Efficient computation of bilinear approximations and Volterra models of nonlinear systems”, IEEE Trans. Signal Process, 66:3 (2018), 804–816 | DOI | Zbl
[19] Apartsin A.S., “K teorii polilineinykh uravnenii Volterra I roda”, Optimizatsiya, upravlenie, intellekt, 2005, no. 1, 5–27
[20] Sidorov N.A., Sidorov D.N., “Ob obobschennykh resheniyakh integralnykh uravnenii v zadache identifikatsii nelineinykh dinamicheskikh modelei”, Avtomatika i telemekhanika, 2009, no. 4, 41–47 | Zbl
[21] Apartsyn A.S., Markova E.V., “On numerical solution of the multilinear Volterra equations of the first kind”, Proc. Internat. Conf. Comp. Math. (ICCM-2002), v. 2, Novosibirsk, 2002, 322–326
[22] Apartsin A.S., “Ob odnom klasse nelineinykh uravnenii Volterra II roda i ikh setochnykh analogakh”, Tr. Mezhdunar. konf. po vychislit. matematike (MKVM-2004), v. I, Prais-kurer, Novosibirsk, 2004, 385–389
[23] Apartsin A.S., “O skhodimosti chislennykh metodov resheniya bilineinogo uravneniya Volterra I roda”, Zhurn. vychisl. matematiki i mat. fiziki, 47:8 (2007), 1378–1386 | DOI
[24] Apartsin A.S., “Polilineinye uravneniya Volterra I roda i nekotorye zadachi upravleniya”, Avtomatika i telemekhanika, 2008, no. 4, 3–16 | Zbl
[25] Apartsin A.S., Spiryaev V.A., “O neuluchshaemykh lambert-otsenkakh reshenii odnogo klassa nelineinykh integralnykh neravenstv”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:2 (2010), 3–12
[26] Apartsin A.S., “K issledovaniyu ustoichivosti resheniya polinomialnogo uravneniya Volterra I roda”, Avtomatika i telemekhanika, 2011, no. 6, 95–102 | Zbl
[27] Apartsin A.S., “Polinomialnye integralnye uravneniya Volterra I roda i funktsiya Lamberta”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:1 (2012), 69–81
[28] Kosov A.A., Semenov E.I., “Funktsiya Lamberta i tochnye resheniya nelineinykh parabolicheskikh uravnenii”, Izv. vuzov. Matematika, 2019, no. 8, 13–20 | DOI | Zbl
[29] Solodusha S.V., Metody postroeniya integralnykh modelei dinamicheskikh sistem: algoritmy i prilozheniya v energetike, diss. ...d-ra tekhn. nauk, Institut sistem energetiki im. L.A. Melenteva SO RAN, Irkutsk, 2019, 353 pp.
[30] Corless R.M., Gonnet G.H., Hare D.E.G., Jeffrey D.J., Knuth D.E., “On the Lambert $W$ function”, Advances Comp. Math., 5:1 (1996), 329–359 | DOI | Zbl