Test polynomial Volterra equation of the first kind in the problem of input signal identification
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 161-174 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper discusses Volterra polynomial integral equations of the first kind that arise in describing a nonlinear dynamic system of the “input-output” type in the form of a finite segment (polynomial) of the Volterra integro-power series. A brief review of research results for such equations is given for the case when the input $x(t)$ is a scalar function of time. The most important feature of these equations is the locality (in the sense of the smallness of the right endpoint of the interval $[0, T]$) of the solution in $C_{[0, T]}$. We consider problem statements developed or outlined in the works of A. S. Apartsyn. The research part of the paper is devoted to the situation with a vector input $x (t) = (x_1 (t), x_2 (t))^T$. In order to study polynomial equations, we consider a test Volterra equation of the first kind. Statements are proved that determine the form of Volterra kernels guaranteeing the validity of estimates in the passage to special majorant integral equations. An algorithm for solving an equivalent Cauchy problem is presented. Unimprovable estimates expressed in terms of the Lambert function are obtained for solutions of special classes of nonlinear integral inequalities.
Keywords: nonlinear dynamic system, Cauchy problem, Lambert function.
Mots-clés : polynomial Volterra equations
@article{TIMM_2021_27_4_a11,
     author = {S. V. Solodusha and E. Yu. Grazhdantseva},
     title = {Test polynomial {Volterra} equation of the first kind in the problem of input signal identification},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {161--174},
     year = {2021},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a11/}
}
TY  - JOUR
AU  - S. V. Solodusha
AU  - E. Yu. Grazhdantseva
TI  - Test polynomial Volterra equation of the first kind in the problem of input signal identification
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 161
EP  - 174
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a11/
LA  - ru
ID  - TIMM_2021_27_4_a11
ER  - 
%0 Journal Article
%A S. V. Solodusha
%A E. Yu. Grazhdantseva
%T Test polynomial Volterra equation of the first kind in the problem of input signal identification
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 161-174
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a11/
%G ru
%F TIMM_2021_27_4_a11
S. V. Solodusha; E. Yu. Grazhdantseva. Test polynomial Volterra equation of the first kind in the problem of input signal identification. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 161-174. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a11/

[1] Tsalyuk Z.B., “Integralnye uravneniya Volterra”, Itogi nauki i tekhniki. Ser. Mat. analiz, 15 (1977), 131–198 | Zbl

[2] Brunner H., Volterra integral equations: an introduction to theory and applications, Cambridge University Press, Cambridge, 2017, 387 pp. | DOI | Zbl

[3] Volterra V., Teoriya funktsionalov, integralnykh i integro-differentsialnykh uravnenii, Nauka, M., 1982, 302 pp.

[4] Boyd S., Chua L.O., Desoer C.A., “Analytical foundations of Volterra series”, IMA J. Math. Control Inform., 1:3 (1984), 243–282 | DOI | Zbl

[5] Schetzen M., “Nonlinear system modelling and analysis from the Volterra and Wiener perspective”, Block-Oriented Nonlinear System Identification, Ser. Lecture Notes in Control and Information Sciences, 404, eds. F. Giri, E-W. Bai., Springer, London, 2010, 13–26 | DOI

[6] Cheng C.M., Peng Z.K., Zhang W.M., Meng G., “Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review”, Mechanical Systems and Signal Processing, 87 (2017), 340–364 | DOI

[7] Liu Q., Xie M., Lim M.-K., “Volterra series models for nonlinear system control”, Proc. 32nd ISR (ISR 2001) - International Symposium on Robotics, 2001, 1386–1391

[8] Apartsin A.S., Neklassicheskie uravneniya Volterra I roda v integralnykh modelyakh dinamicheskikh sistem: teoriya, chislennye metody, prilozheniya, dis. ...d-r fiz.-mat. nauk, Irkut. gos. un-t, Irkutsk, 2000, 319 pp.

[9] Venikov V.A., Sukhanov O.A., Guseinov A.F., “Funktsionalnoe predstavlenie podsistem v kiberneticheskom modelirovanii”, Kibernetika elektroenergeticheskikh sistem, trudy seminara, v. 2, Bryansk, 1974, 39–46

[10] Galin N.M., Zyabirov F.I., “Metod resheniya nelineinykh zadach teploobmena s primeneniem funktsionalnykh ryadov Volterra”, Gidrodinamika i teploobmen v odnofaznykh i dvukhfaznykh potokakh, sb. statei, Izd-vo MEI, M., 1987, 34–48

[11] Bhatt D., Sharma S.N., Volterra model-based control for nonlinear systems via Carleman linearization, Preprint, 2021, 23 pp., arXiv: math.2101.00495

[12] Apartsin A.S., Solodusha S.V., “Ob optimizatsii amplitud testovykh signalov pri identifikatsii yader Volterra”, Avtomatika i telemekhanika, 2004, no. 3, 116–124 | Zbl

[13] Apartsin A.S., Neklassicheskie uravneniya Volterra I roda: teoriya i chislennye metody, Nauka, Novosibirsk, 1999, 193 pp.

[14] Tekhnicheskaya kibernetika. Teoriya avtomaticheskogo regulirovaniya. Teoriya nestatsionarnykh, nelineinykh i samonastraivayuschikhsya sistem avtomaticheskogo regulirovaniya, v. II, ed. red. V.V. Solodovnikova, Mashinostroenie, M., 1969, 368 pp.

[15] Apartsin A.S., “Ob ekvivalentnykh normakh v teorii polinomialnykh integralnykh uravnenii Volterra I roda”, Izv. Irkut. gos. un-ta. Ser. Matematika, 3:1 (2010), 19–29 | Zbl

[16] Apartsin A.S., “O polilineinykh uravneniyakh Volterra I roda”, Avtomatika i telemekhanika, 2004, no. 2, 118–125 | Zbl

[17] Belbas S.A., Bulka Yu., “Numerical solution of multiple nonlinear Volterra integral equations”, Appl. Math. Comp., 217:9 (2011), 4791–4804 | DOI | Zbl

[18] Burt P.M.S., Goulart J.H. de M., “Efficient computation of bilinear approximations and Volterra models of nonlinear systems”, IEEE Trans. Signal Process, 66:3 (2018), 804–816 | DOI | Zbl

[19] Apartsin A.S., “K teorii polilineinykh uravnenii Volterra I roda”, Optimizatsiya, upravlenie, intellekt, 2005, no. 1, 5–27

[20] Sidorov N.A., Sidorov D.N., “Ob obobschennykh resheniyakh integralnykh uravnenii v zadache identifikatsii nelineinykh dinamicheskikh modelei”, Avtomatika i telemekhanika, 2009, no. 4, 41–47 | Zbl

[21] Apartsyn A.S., Markova E.V., “On numerical solution of the multilinear Volterra equations of the first kind”, Proc. Internat. Conf. Comp. Math. (ICCM-2002), v. 2, Novosibirsk, 2002, 322–326

[22] Apartsin A.S., “Ob odnom klasse nelineinykh uravnenii Volterra II roda i ikh setochnykh analogakh”, Tr. Mezhdunar. konf. po vychislit. matematike (MKVM-2004), v. I, Prais-kurer, Novosibirsk, 2004, 385–389

[23] Apartsin A.S., “O skhodimosti chislennykh metodov resheniya bilineinogo uravneniya Volterra I roda”, Zhurn. vychisl. matematiki i mat. fiziki, 47:8 (2007), 1378–1386 | DOI

[24] Apartsin A.S., “Polilineinye uravneniya Volterra I roda i nekotorye zadachi upravleniya”, Avtomatika i telemekhanika, 2008, no. 4, 3–16 | Zbl

[25] Apartsin A.S., Spiryaev V.A., “O neuluchshaemykh lambert-otsenkakh reshenii odnogo klassa nelineinykh integralnykh neravenstv”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:2 (2010), 3–12

[26] Apartsin A.S., “K issledovaniyu ustoichivosti resheniya polinomialnogo uravneniya Volterra I roda”, Avtomatika i telemekhanika, 2011, no. 6, 95–102 | Zbl

[27] Apartsin A.S., “Polinomialnye integralnye uravneniya Volterra I roda i funktsiya Lamberta”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:1 (2012), 69–81

[28] Kosov A.A., Semenov E.I., “Funktsiya Lamberta i tochnye resheniya nelineinykh parabolicheskikh uravnenii”, Izv. vuzov. Matematika, 2019, no. 8, 13–20 | DOI | Zbl

[29] Solodusha S.V., Metody postroeniya integralnykh modelei dinamicheskikh sistem: algoritmy i prilozheniya v energetike, diss. ...d-ra tekhn. nauk, Institut sistem energetiki im. L.A. Melenteva SO RAN, Irkutsk, 2019, 353 pp.

[30] Corless R.M., Gonnet G.H., Hare D.E.G., Jeffrey D.J., Knuth D.E., “On the Lambert $W$ function”, Advances Comp. Math., 5:1 (1996), 329–359 | DOI | Zbl