A solution algorithm for a problem of optimal exploitation of a system with a binary structure
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 142-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a dynamic problem of an optimal sustainable exploitation of a renewable bioresource system that in equilibrium is equivalent to a mathematical programming problem. The latter, in the case of a system with a binary structure described by a nonlinear generalization of Leslie's model, for a fixed value of some aggregated variable, turns into a linear program. A solution algorithm is proposed for the optimal sustainable exploitation problem. The algorithm employs the peculiarities of the constraint system of the problem dual to this linear program and reduces the original problem to a series of one-dimensional optimization problems.
Keywords: rational exploitation of ecosystems, optimal nondestructive controls, concave programming.
@article{TIMM_2021_27_4_a10,
     author = {A. I. Smirnov and V. D. Mazurov},
     title = {A solution algorithm for a problem of optimal exploitation of a system with a binary structure},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {142--160},
     year = {2021},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a10/}
}
TY  - JOUR
AU  - A. I. Smirnov
AU  - V. D. Mazurov
TI  - A solution algorithm for a problem of optimal exploitation of a system with a binary structure
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 142
EP  - 160
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a10/
LA  - ru
ID  - TIMM_2021_27_4_a10
ER  - 
%0 Journal Article
%A A. I. Smirnov
%A V. D. Mazurov
%T A solution algorithm for a problem of optimal exploitation of a system with a binary structure
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 142-160
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a10/
%G ru
%F TIMM_2021_27_4_a10
A. I. Smirnov; V. D. Mazurov. A solution algorithm for a problem of optimal exploitation of a system with a binary structure. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 142-160. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a10/

[1] The state of world fisheries and aquaculture. Sustainability in action, Food and Agriculture Organization of the United Nations, Rome, 2020, 210 pp. | DOI

[2] Link J. S., Watson R. A., “Global ecosystem overfishing: Clear delineation within real limits to production”, Science Advances, 5:6 (2019), 1–11 | DOI

[3] The state of the world's forests. Forests, biodiversity and people, Food and Agriculture Organization of the United Nations, Rome, 2020, 188 pp. | DOI

[4] Scott Mills L. S., Conservation of wildlife populations: Demography, genetics and management, 2nd ed., Wiley-Blackwell, NJ, 2013, 342 pp.

[5] Fonseca C. R., Paterno G. B., Guadagnin D. L. et al., “Conservation biology - four decades of problem and solution-based research”, Perspectives in ecology and conservation, 19:2 (2021), 121–130 | DOI

[6] Roxburgh T., Ellis K., Johnson J. A., et al., World Wildlife Fund., 2020, 102 pp. URL: https://www.wwf.org.uk/sites/default/files/2020-02/Global_Futures_Technical_Report.pdf

[7] Clark C. W., Mathematical bioeconomics: The mathematics of conservation, Pure and applied mathematics: A Wiley Series of Texts, Monographs and Tracts, 3rd ed., Wiley Interscience, NY, 2010, 368 pp.

[8] Getz W. M., Haight R. G., Population harvesting: demographic models of fish, forest and animal resources, Princeton University Press, Princeton (NJ), 1989, 391 pp.

[9] Andersen K. H., Fish ecology, evolution and exploitation: A new theoretical synthesis, Monographs in Population Biology, 62, Princeton University Press, Princeton (NJ), 2019, 257 pp. | DOI

[10] Quaas M. F., Tahvonen O., “Strategic harvesting of age-structured populations”, Marine Resource Economics, 34:4 (2019), 291–309 | DOI

[11] Tuljapurkar Sh., Coulson T., Steiner U. K., “Structured population models: Introduction”, Theoretical Population Biology, 82:4 (2012), 241–243 | DOI

[12] Botsford L. W., White J. W., Hastings A., Population dynamics for conservation, Oxford University Press, Oxford, 2019, 352 pp. | DOI

[13] De Lara M., Doyen L., Sustainable management of natural resources: Mathematical models and methods, Springer-Verlag, Berlin; Heidelberg, 2008, 266 pp. | DOI

[14] Smirnov A. I., Mazurov Vl. D., “On existence of optimal non-destructive controls for ecosystem exploitation problem applied to a generalization of Leslie model”, DEStech Transactions on Computer Science and Engineering, Suppl. Vol. (Proc. IX International on Conference Optimization and Applications (OPTIMA-2018)), eds. Yu. G. Evtushenko et al., 2018, 199–213 | DOI

[15] Smirnov A. I., Mazurov Vl. D., “Generalization of controls bimodality property in the optimal exploitation problem for ecological population with binary structure”, Proc. Internat. Conf. on Optimization and Applications (OPTIMA 2019), Ser. Communications in Computer and Information Science, 1145, eds. M. Jacimovic et al., 2020, 206–221 | DOI | Zbl

[16] Mazurov Vl. D., Smirnov A. I., “Kriterii suschestvovaniya sokhranyayuschikh upravlenii zadachi optimalnoi ekspluatatsii sistemy s binarnoi strukturoi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 26:3 (2020), 101–117 | DOI