@article{TIMM_2021_27_4_a1,
author = {A. F. Albu and Yu. G. Evtushenko and V. I. Zubov},
title = {Application of {Second-Order} {Optimization} {Methods} for {Solving} an {Inverse} {Coefficient} {Problem} in the {Three-Dimensional} {Statement}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {19--34},
year = {2021},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a1/}
}
TY - JOUR AU - A. F. Albu AU - Yu. G. Evtushenko AU - V. I. Zubov TI - Application of Second-Order Optimization Methods for Solving an Inverse Coefficient Problem in the Three-Dimensional Statement JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 19 EP - 34 VL - 27 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a1/ LA - ru ID - TIMM_2021_27_4_a1 ER -
%0 Journal Article %A A. F. Albu %A Yu. G. Evtushenko %A V. I. Zubov %T Application of Second-Order Optimization Methods for Solving an Inverse Coefficient Problem in the Three-Dimensional Statement %J Trudy Instituta matematiki i mehaniki %D 2021 %P 19-34 %V 27 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a1/ %G ru %F TIMM_2021_27_4_a1
A. F. Albu; Yu. G. Evtushenko; V. I. Zubov. Application of Second-Order Optimization Methods for Solving an Inverse Coefficient Problem in the Three-Dimensional Statement. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 19-34. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a1/
[1] Kozdoba L. A., Krukovskii P. G., Metody resheniya obratnykh zadach teploperenosa, Naukova Dumka, Kiev, 1982, 358 pp.
[2] Alifanov O. M., Obratnye zadachi teploobmena, Mashinostroenie, M., 1988, 280 pp.
[3] Vabischevich P. N., Denisenko A. Yu., “Chislennye metody resheniya koeffitsientnykh obratnykh zadach”, Metody mat. modelirovaniya i vychislitelnoi diagnostiki, Izd-vo MGU, M., 1990, 35–45
[4] Samarskii A. A., Vabischevich P. N., “Raznostnye metody resheniya obratnykh zadach matematicheskoi fiziki”, Fundamentalnye osnovy mat. modelirovaniya, Nauka, M., 1997, 5–97 | Zbl
[5] Samarskii A. A., Vabischevich P. N., Vychislitelnaya teploperedacha, Editorial URSS, M., 2003, 784 pp.
[6] Marchuk G. I., Sopryazhennye uravneniya i analiz slozhnykh sistem, Nauka, M., 1992, 334 pp.
[7] Balazs Czel, Gyula Grof., “Inverse identification of temperature-dependent thermal conductivity via genetic algorithm with cost function-based rearrangement of genes”, Int. J. Heat Mass Transf., 55:15 (2012), 4254–4263 | DOI
[8] Miao Cui, Kai Yang, Xiao-liang Xu, Sheng-dong Wang, Xiao-wei Gao, “A modified Levenberg-Marquardt algorithm for simultaneous estimation of multi-parameters of boundary heat flux by solving transient nonlinear inverse heat conduction problems”, Int. J. Heat Mass Transf., 97 (2016), 908–916 | DOI
[9] Matsevityi Yu. M., Alekhina S. V., Borukhov V. T., Zayats G. M., Kostikov A. O., “Identification of the thermal conductivity coefficient for quasi-stationary two-dimensional heat conduction equations”, J. Eng. Phys. Thermophysics, 90:6 (2017), 1295–1301 | DOI
[10] Albu A. F., Zubov V. I., “Identifikatsiya koeffitsienta teploprovodnosti veschestva v trekhmernom sluchae putem resheniya sootvetstvuyuschei zadachi optimizatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 61:9 (2021), 1447–1463 | DOI | Zbl
[11] Albu A. F., Zubov V. I., “Opredelenie koeffitsienta teploprovodnosti veschestva po teplovomu potoku na poverkhnosti trekhmernogo tela”, Zhurn. vychisl. matematiki i mat. fiziki, 61:10 (2021), 1594–1609 | DOI | Zbl
[12] Evtushenko Yu. G., Optimizatsiya i bystroe avtomaticheskoe differentsirovanie, Izd-vo VTs im. A. A. Dorodnitsyna RAN, M., 2013, 144 pp.