Application of Second-Order Optimization Methods for Solving an Inverse Coefficient Problem in the Three-Dimensional Statement
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 19-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An inverse problem of finding a temperature-dependent thermal conductivity of a substance is considered. The analysis is based on the first boundary value problem for the three-dimensional nonstationary heat equation. The sample of the substance under investigation has the form of a rectangular parallelepiped. The inverse coefficient problem is reduced to a variational problem. The root-mean-square deviation of the calculated heat flux on the surface of the body from the experimentally obtained flux is chosen as the cost functional. The paper investigates the possibility of solving the variational problem by optimization methods of the second order of convergence. On the example of a number of nonlinear problems whose coefficients are temperature-dependent, a comparative analysis of the solution of these problems by means of the gradient method and the Levenberg–Marquardt method is performed. The accuracy of calculating the elements of the Jacobi-type matrix required to implement the Levenberg–Marquardt method has a significant impact on the convergence of the iterative process. It is essential that in our approach the elements of the Jacobi-type matrix are calculated with machine precision due to the use of the fast automatic differentiation technique. Much attention is paid to the features of solving the inverse problem associated with its three-dimensional spatial nature.
Keywords: inverse coefficient problems, nonlinear problems, three-dimensional heat equation, optimal control, numerical optimization methods, alternating direction schemes.
@article{TIMM_2021_27_4_a1,
     author = {A. F. Albu and Yu. G. Evtushenko and V. I. Zubov},
     title = {Application of {Second-Order} {Optimization} {Methods} for {Solving} an {Inverse} {Coefficient} {Problem} in the {Three-Dimensional} {Statement}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {19--34},
     year = {2021},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a1/}
}
TY  - JOUR
AU  - A. F. Albu
AU  - Yu. G. Evtushenko
AU  - V. I. Zubov
TI  - Application of Second-Order Optimization Methods for Solving an Inverse Coefficient Problem in the Three-Dimensional Statement
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 19
EP  - 34
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a1/
LA  - ru
ID  - TIMM_2021_27_4_a1
ER  - 
%0 Journal Article
%A A. F. Albu
%A Yu. G. Evtushenko
%A V. I. Zubov
%T Application of Second-Order Optimization Methods for Solving an Inverse Coefficient Problem in the Three-Dimensional Statement
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 19-34
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a1/
%G ru
%F TIMM_2021_27_4_a1
A. F. Albu; Yu. G. Evtushenko; V. I. Zubov. Application of Second-Order Optimization Methods for Solving an Inverse Coefficient Problem in the Three-Dimensional Statement. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 19-34. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a1/

[1] Kozdoba L. A., Krukovskii P. G., Metody resheniya obratnykh zadach teploperenosa, Naukova Dumka, Kiev, 1982, 358 pp.

[2] Alifanov O. M., Obratnye zadachi teploobmena, Mashinostroenie, M., 1988, 280 pp.

[3] Vabischevich P. N., Denisenko A. Yu., “Chislennye metody resheniya koeffitsientnykh obratnykh zadach”, Metody mat. modelirovaniya i vychislitelnoi diagnostiki, Izd-vo MGU, M., 1990, 35–45

[4] Samarskii A. A., Vabischevich P. N., “Raznostnye metody resheniya obratnykh zadach matematicheskoi fiziki”, Fundamentalnye osnovy mat. modelirovaniya, Nauka, M., 1997, 5–97 | Zbl

[5] Samarskii A. A., Vabischevich P. N., Vychislitelnaya teploperedacha, Editorial URSS, M., 2003, 784 pp.

[6] Marchuk G. I., Sopryazhennye uravneniya i analiz slozhnykh sistem, Nauka, M., 1992, 334 pp.

[7] Balazs Czel, Gyula Grof., “Inverse identification of temperature-dependent thermal conductivity via genetic algorithm with cost function-based rearrangement of genes”, Int. J. Heat Mass Transf., 55:15 (2012), 4254–4263 | DOI

[8] Miao Cui, Kai Yang, Xiao-liang Xu, Sheng-dong Wang, Xiao-wei Gao, “A modified Levenberg-Marquardt algorithm for simultaneous estimation of multi-parameters of boundary heat flux by solving transient nonlinear inverse heat conduction problems”, Int. J. Heat Mass Transf., 97 (2016), 908–916 | DOI

[9] Matsevityi Yu. M., Alekhina S. V., Borukhov V. T., Zayats G. M., Kostikov A. O., “Identification of the thermal conductivity coefficient for quasi-stationary two-dimensional heat conduction equations”, J. Eng. Phys. Thermophysics, 90:6 (2017), 1295–1301 | DOI

[10] Albu A. F., Zubov V. I., “Identifikatsiya koeffitsienta teploprovodnosti veschestva v trekhmernom sluchae putem resheniya sootvetstvuyuschei zadachi optimizatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 61:9 (2021), 1447–1463 | DOI | Zbl

[11] Albu A. F., Zubov V. I., “Opredelenie koeffitsienta teploprovodnosti veschestva po teplovomu potoku na poverkhnosti trekhmernogo tela”, Zhurn. vychisl. matematiki i mat. fiziki, 61:10 (2021), 1594–1609 | DOI | Zbl

[12] Evtushenko Yu. G., Optimizatsiya i bystroe avtomaticheskoe differentsirovanie, Izd-vo VTs im. A. A. Dorodnitsyna RAN, M., 2013, 144 pp.