Algorithms for localizing discontinuity lines with a new type of averaging
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 5-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the ill-posed problem of localizing (finding the position of) the discontinuity lines of a function of two variables. It is assumed that the function is smooth outside the discontinuity lines and has a discontinuity of the first kind at each point of these lines. The average values of the perturbed function on a square $\tau\times\tau$ are assumed to be known at each node of a uniform grid with step $\tau$. The perturbed function with a given perturbation level $\delta$ approximates the exact function in the space $L_2(\mathbb{R}^2)$. Global discrete regularizing algorithms are constructed for the localization of the discontinuity lines from noisy data. A new approach to the construction of averaging methods for solving the localization problem is proposed. The use of a new type of averaging allows one to construct regularizing algorithms without using the derivative of the averaging function. A new technique is developed and used for deriving estimates. This technique is applicable to a wide range of new methods with a nonclassical averaging domain. On classes of functions with piecewise linear discontinuity lines, estimates of the localization error and other important characteristics of the regularizing algorithm are obtained. It is shown that the new algorithms in some situations are more economical in terms of the number of operations compared to the methods that were investigated by the authors in previous works.
Keywords: ill-posed problem, regularization method, discontinuity lines, global localization, discretization, separability threshold.
@article{TIMM_2021_27_4_a0,
     author = {A. L. Ageev and T. V. Antonova},
     title = {Algorithms for localizing discontinuity lines with a new type of averaging},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {5--18},
     year = {2021},
     volume = {27},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a0/}
}
TY  - JOUR
AU  - A. L. Ageev
AU  - T. V. Antonova
TI  - Algorithms for localizing discontinuity lines with a new type of averaging
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 5
EP  - 18
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a0/
LA  - ru
ID  - TIMM_2021_27_4_a0
ER  - 
%0 Journal Article
%A A. L. Ageev
%A T. V. Antonova
%T Algorithms for localizing discontinuity lines with a new type of averaging
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 5-18
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a0/
%G ru
%F TIMM_2021_27_4_a0
A. L. Ageev; T. V. Antonova. Algorithms for localizing discontinuity lines with a new type of averaging. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 4, pp. 5-18. http://geodesic.mathdoc.fr/item/TIMM_2021_27_4_a0/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp.

[2] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp.

[3] Vasin V. V., Ageev A. L., Ill-posed problems with a priori information, VSP, Utrecht, 1995, 255 pp. | Zbl

[4] Malla S., Veivlety v obrabotke signalov, Mir, M., 2005, 671 pp.

[5] Vvedenie v konturnyi analiz i ego prilozheniya k obrabotke izobrazhenii i signalov, ed. red. Ya. A. Furmana, Fizmatlit, M., 2002, 596 pp.

[6] Gonsales R., Vuds R., Tsifrovaya obrabotka izobrazhenii, Izd. 3-e ispravlennoe i dopolnennoe, Tekhnosfera, M., 2012, 1104 pp.

[7] Antonova T.V., “Metod lokalizatsii linii razryva priblizhenno zadannoi funktsii dvukh peremennykh”, Sib. zhurn. vychisl. matematiki, 15:4 (2012), 345–357 | Zbl

[8] Ageev A.L., Antonova T.V., “K voprosu o globalnoi lokalizatsii linii razryva funktsii dvukh peremennykh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:2 (2018), 12–23 | DOI

[9] Mafi M., Rajaei H., Cabrerizo M., and Adjouadi M., “A robust edge detection approach in the presence of high impulse noise intensity through switching adaptive median and fixed weighted mean filtering”, IEEE Transactions on image processing, 27:11 (2018), 5475–5489 | DOI

[10] Al-nasrawi M., Deng G., Thai B., “Edge-aware smoothing through adaptive interpolation”, Signal, Image and Video Processing, 12 (2018), 347–354 | DOI

[11] Chochia P.A., “Konturno-ogranichennoe sglazhivanie, sokhranyayuschee strukturu”, Informatsionnye protsessy, 20:3 (2020), 193–204

[12] Ageev A.L., Antonova T.V., “New methods for the localization of discontinuities of the first kind for functions of bounded variation”, J. Inverse Ill-Posed Probl., 21:2 (2013), 177–191 | DOI | Zbl

[13] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v 3 t., v. 1, 8-e izd., Fizmatlit, M., 2003, 680 pp.

[14] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v 3 t., v. 3, 8-e izd., Fizmatlit, M., 2003, 728 pp.