On the analytical construction of solutions for one class of time-optimal control problems with nonconvex target set
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 128-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A time-optimal control problem with a circular velocity vectogram is considered. For one class of nonconvex planar target sets such that a part of their boundary coincides with a line segment, conditions are found that allow one to construct branches of singular (scattering) curves in analytical form. Explicit formulas are obtained for pseudovertices, i.e., singular points of the boundary of the target set generating branches of the singular set. An analytical relation is revealed between the endpoints of different optimal trajectories that have the same initial conditions on the singular set and hit the target set in a neighborhood of a pseudovertex. Formulas are found for the extreme points of branches of the singular set. The developed approaches to the exact construction of nonsmooth solutions of dynamic control problems are illustrated with examples.
Keywords: scattering curve, pseudovertex, mapping, curvature.
@article{TIMM_2021_27_3_a9,
     author = {P. D. Lebedev and A. A. Uspenskii},
     title = {On the analytical construction of solutions for one class of time-optimal control problems with nonconvex target set},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {128--140},
     year = {2021},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a9/}
}
TY  - JOUR
AU  - P. D. Lebedev
AU  - A. A. Uspenskii
TI  - On the analytical construction of solutions for one class of time-optimal control problems with nonconvex target set
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 128
EP  - 140
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a9/
LA  - ru
ID  - TIMM_2021_27_3_a9
ER  - 
%0 Journal Article
%A P. D. Lebedev
%A A. A. Uspenskii
%T On the analytical construction of solutions for one class of time-optimal control problems with nonconvex target set
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 128-140
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a9/
%G ru
%F TIMM_2021_27_3_a9
P. D. Lebedev; A. A. Uspenskii. On the analytical construction of solutions for one class of time-optimal control problems with nonconvex target set. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 128-140. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a9/

[1] Subbotin A.I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, Izd-vo In-ta kompyuternykh tekhnologii, Moskva-Izhevsk, 2003, 336 pp.

[2] Lebedev P.D., Uspenskii A.A., “Analytical and numerical construction of the optimal outcome function for a class of time-optimal problems”, Comput. Math. Modeling, 19:4 (2008), 375–386 | DOI | Zbl

[3] Kruzhkov S.N., “Obobschennye resheniya uravnenii Gamiltona–Yakobi tipa eikonala. I. Postanovka zadach, teoremy suschestvovaniya, edinstvennosti i ustoichivosti, nekotorye svoistva reshenii”, Mat. sb., 98 (140):3 (11) (1975), 450–493 | Zbl

[4] Arnold V.I., Osobennosti kaustik i volnovykh frontov, FAZIS, M., 1996, 334 pp.

[5] Demyanov V.F., Vasilev L.V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981, 384 pp.

[6] Lebedev P.D., Uspenskii A.A., “Postroenie rasseivayuschikh krivykh v odnom klasse zadach bystrodeistviya pri skachkakh krivizny granitsy tselevogo mnozhestva”, Izv. In-ta matematiki i informatiki Udmurt. goc. un-ta, 55 (2020), 93–112 | DOI | Zbl

[7] Aizeks R., Differentsialnye igry, Mir, M., 1967, 479 pp.

[8] Siersma D., “Properties of conflict sets in the plan”, Banach Center Publ., 50 (1999), 267–276 | DOI | Zbl

[9] Giblin P.J., Reeve G., “Centre symmetry sets of families of plane curves”, Demonstratio Mathematica, 48:2 (2015), 167–192 | DOI | Zbl

[10] Giblin P.G., “Symmetry sets and medial axes in two and three dimensions”, The Mathematics of Surfaces IX, eds. Roperto Cipolla and Ralph Martin, Springer-Verlag, Berlin, 2000, 306–321 | DOI | Zbl

[11] Alimov A.R., Tsarkov I.G., “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, Uspekhi mat. nauk, 71:1 (2016), 3–84 | DOI | Zbl

[12] Ushakov V.N., Ershov A.A., Pershakov M.V., “Ob odnom dopolnenii k otsenke L.S. Pontryagina geometricheskoi raznosti mnozhestv na ploskosti”, Izv. In-ta matematiki i informatiki Udmurt. goc. un-ta, 4 (2019), 63–73 | DOI

[13] Sedykh V.D., “O topologii volnovykh frontov v prostranstvakh nebolshikh razmernostei”, Izv. RAN. Ser. matematicheskaya, 76:2 (2012), 171–214 | DOI | Zbl

[14] Sedykh V.D., “Topologiya osobennostei rostka ustoichivoi veschestvennoi kaustiki tipa $E_6$”, Izv. RAN. Ser. matematicheskaya, 82:3 (2018), 154–169 | DOI | Zbl

[15] Poznyak E.G., Shikin E.V., Differentsialnaya geometriya: pervoe znakomstvo, Izd.-vo MGU, M., 1990, 384 pp.

[16] Lebedev P.D., “Vychislenie mery nevypuklosti ploskikh mnozhestv”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13:3 (2007), 84–94

[17] Lebedev P.D., Uspenskii A.A., “Geometriya i asimptotika volnovykh frontov”, Izv. vysshikh ucheb. zavedenii. Matematika, 2008, no. 3 (550), 27–37 | Zbl

[18] Lebedev P.D., Uspenskii A.A., “Geometric singularities of the solution of the Dirichlet boundary problem for Hamilton–Jacobi equation with a low order of smoothness of the border curve”, Mathematical analysis with applications, Intern. Conf. (CONCORD-90, Ekaterinburg, July 2018), Springer Proceedings in Mathematics Statistics, 318, eds. V. S. Pinelas, A. Kim, V. Vlasov, Springer, Cham, 2020, 109–122 | DOI | Zbl

[19] Rashevskii P.K., Kurs differentsialnoi geometrii, Editorial, URSS, M., 2003, 432 pp.