@article{TIMM_2021_27_3_a9,
author = {P. D. Lebedev and A. A. Uspenskii},
title = {On the analytical construction of solutions for one class of time-optimal control problems with nonconvex target set},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {128--140},
year = {2021},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a9/}
}
TY - JOUR AU - P. D. Lebedev AU - A. A. Uspenskii TI - On the analytical construction of solutions for one class of time-optimal control problems with nonconvex target set JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 128 EP - 140 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a9/ LA - ru ID - TIMM_2021_27_3_a9 ER -
%0 Journal Article %A P. D. Lebedev %A A. A. Uspenskii %T On the analytical construction of solutions for one class of time-optimal control problems with nonconvex target set %J Trudy Instituta matematiki i mehaniki %D 2021 %P 128-140 %V 27 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a9/ %G ru %F TIMM_2021_27_3_a9
P. D. Lebedev; A. A. Uspenskii. On the analytical construction of solutions for one class of time-optimal control problems with nonconvex target set. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 128-140. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a9/
[1] Subbotin A.I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, Izd-vo In-ta kompyuternykh tekhnologii, Moskva-Izhevsk, 2003, 336 pp.
[2] Lebedev P.D., Uspenskii A.A., “Analytical and numerical construction of the optimal outcome function for a class of time-optimal problems”, Comput. Math. Modeling, 19:4 (2008), 375–386 | DOI | Zbl
[3] Kruzhkov S.N., “Obobschennye resheniya uravnenii Gamiltona–Yakobi tipa eikonala. I. Postanovka zadach, teoremy suschestvovaniya, edinstvennosti i ustoichivosti, nekotorye svoistva reshenii”, Mat. sb., 98 (140):3 (11) (1975), 450–493 | Zbl
[4] Arnold V.I., Osobennosti kaustik i volnovykh frontov, FAZIS, M., 1996, 334 pp.
[5] Demyanov V.F., Vasilev L.V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981, 384 pp.
[6] Lebedev P.D., Uspenskii A.A., “Postroenie rasseivayuschikh krivykh v odnom klasse zadach bystrodeistviya pri skachkakh krivizny granitsy tselevogo mnozhestva”, Izv. In-ta matematiki i informatiki Udmurt. goc. un-ta, 55 (2020), 93–112 | DOI | Zbl
[7] Aizeks R., Differentsialnye igry, Mir, M., 1967, 479 pp.
[8] Siersma D., “Properties of conflict sets in the plan”, Banach Center Publ., 50 (1999), 267–276 | DOI | Zbl
[9] Giblin P.J., Reeve G., “Centre symmetry sets of families of plane curves”, Demonstratio Mathematica, 48:2 (2015), 167–192 | DOI | Zbl
[10] Giblin P.G., “Symmetry sets and medial axes in two and three dimensions”, The Mathematics of Surfaces IX, eds. Roperto Cipolla and Ralph Martin, Springer-Verlag, Berlin, 2000, 306–321 | DOI | Zbl
[11] Alimov A.R., Tsarkov I.G., “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, Uspekhi mat. nauk, 71:1 (2016), 3–84 | DOI | Zbl
[12] Ushakov V.N., Ershov A.A., Pershakov M.V., “Ob odnom dopolnenii k otsenke L.S. Pontryagina geometricheskoi raznosti mnozhestv na ploskosti”, Izv. In-ta matematiki i informatiki Udmurt. goc. un-ta, 4 (2019), 63–73 | DOI
[13] Sedykh V.D., “O topologii volnovykh frontov v prostranstvakh nebolshikh razmernostei”, Izv. RAN. Ser. matematicheskaya, 76:2 (2012), 171–214 | DOI | Zbl
[14] Sedykh V.D., “Topologiya osobennostei rostka ustoichivoi veschestvennoi kaustiki tipa $E_6$”, Izv. RAN. Ser. matematicheskaya, 82:3 (2018), 154–169 | DOI | Zbl
[15] Poznyak E.G., Shikin E.V., Differentsialnaya geometriya: pervoe znakomstvo, Izd.-vo MGU, M., 1990, 384 pp.
[16] Lebedev P.D., “Vychislenie mery nevypuklosti ploskikh mnozhestv”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13:3 (2007), 84–94
[17] Lebedev P.D., Uspenskii A.A., “Geometriya i asimptotika volnovykh frontov”, Izv. vysshikh ucheb. zavedenii. Matematika, 2008, no. 3 (550), 27–37 | Zbl
[18] Lebedev P.D., Uspenskii A.A., “Geometric singularities of the solution of the Dirichlet boundary problem for Hamilton–Jacobi equation with a low order of smoothness of the border curve”, Mathematical analysis with applications, Intern. Conf. (CONCORD-90, Ekaterinburg, July 2018), Springer Proceedings in Mathematics Statistics, 318, eds. V. S. Pinelas, A. Kim, V. Vlasov, Springer, Cham, 2020, 109–122 | DOI | Zbl
[19] Rashevskii P.K., Kurs differentsialnoi geometrii, Editorial, URSS, M., 2003, 432 pp.