On the Duality of Mathematical Models for Problems in Mechanics and in the Theory of Electrical Circuits
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 115-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Considered in this paper are mathematical models of mechanics together with the theory of electrical circuits, and their similar dynamical structure is revealed. Using basic analogies, a chain of mechanical springs and an equivalent electrical analogue are constructed. Examples of “successful” borrowings are given, when methods of the theory of electrical circuits may be used to solve stabilization problems for a mechanical system formed by a set of interconnected mechanical subsystems.
Keywords: mechanical system, electrical circuit, duality of mechanical and electrical systems, stabilization of interconnected systems.
@article{TIMM_2021_27_3_a8,
     author = {A. B. Kurzhanski and A. A. Usova},
     title = {On the {Duality} of {Mathematical} {Models} for {Problems} in {Mechanics} and in the {Theory} of {Electrical} {Circuits}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {115--127},
     year = {2021},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a8/}
}
TY  - JOUR
AU  - A. B. Kurzhanski
AU  - A. A. Usova
TI  - On the Duality of Mathematical Models for Problems in Mechanics and in the Theory of Electrical Circuits
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 115
EP  - 127
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a8/
LA  - ru
ID  - TIMM_2021_27_3_a8
ER  - 
%0 Journal Article
%A A. B. Kurzhanski
%A A. A. Usova
%T On the Duality of Mathematical Models for Problems in Mechanics and in the Theory of Electrical Circuits
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 115-127
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a8/
%G ru
%F TIMM_2021_27_3_a8
A. B. Kurzhanski; A. A. Usova. On the Duality of Mathematical Models for Problems in Mechanics and in the Theory of Electrical Circuits. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 115-127. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a8/

[1] Kurzhanski A.B., Varaiya P., Dynamics and control of trajectory tubes: Theory and computation, Systems Control: Foundations Applications, 85, Birkhauser, Basel, 2014, 445 pp. | DOI

[2] Abramova V.V., O zadachakh nablyudeniya i upravleniya dlya ostsilliruyuschei tsepi, diplomnaya rabota; nauch. ruk. A. B. Kurzhanskii, fak. vychislitelnoi matematiki i kibernetiki MGU im. M.V. Lomonosova, 2020, 34 pp.

[3] Akbaba M., Dalcali A., Gökdağ M., “Modeling and simulation of complex mechanical systems using electrical circuit analog”, Internat. Conf. on Advanced Technologies: Computer Engineering and Science (ICATCES'18), Proceedings, 2018, 630–634

[4] Akbaba M., “Modeling and simulation of dynamic mechanical systems using electric circuit analogy”, Turkish J. Engineering, 5:3 (2021), 111–117 | DOI

[5] Hogan N., “Controlling impedance at the man/machine interface”, Proc. of the IEEE Conf. on Robotics and Automation, 1989, 1626–1631 | DOI

[6] Hill D.J., Moylan P.J., “Stability results for nonlinear feedback systems”, Automatica, 13:4 (1977), 377–382 | DOI | Zbl

[7] Nuño E., Basañez L., Ortega R., “Passivity-based control for bilateral teleoperation: A tutorial”, Automatica, 4:3 (2011), 485–495 | DOI

[8] Anderson R.J., Spong M.W., “Bilateral control of teleoperators with time delay”, IEEE Transactions on Automatic Control, AC-34:5 (1989), 494–501 | DOI

[9] Polushin I.G., “A generalization of the scattering transformation for conic systems”, IEEE Transactions on Automatic Control, 59:7 (2014), 1989–1995 | DOI | Zbl

[10] Usova A.A., Polushin I.G., Patel R.V., “Scattering-based stabilization of non-planar conic systems”, Automatica, 93 (2018), 1–11 | DOI | Zbl

[11] Usova Anastasiia, Generalized scattering-based stabilization of nonlinear interconnected systems, Electronic Thesis and Dissertation Repository, 5821, 2018, 168 pp. URL: https://ir.lib.uwo.ca/etd/5821 | Zbl

[12] Anderson R.J., Spong M.W., “Asymptotic stability for force reflecting teleoperators with time delay”, The International J. Robotics Research, 11:2 (1992), 135–149 | DOI