On the polyhedral method of control synthesis in the problem of target evasion in discrete-time systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 101-114
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A conflict-control problem is considered for a linear discrete-time system with two controls, where the aim of the first control is to steer the trajectory of the system to a given target set, whereas the aim of the second control is opposite. Two subproblems arise here, namely, an approach problem and an evasion problem. It is assumed that the target set is a nondegenerate parallelepiped and both controls are subject to given parallelotope-valued constraints. The paper is devoted to the development of a fast polyhedral method of control synthesis in the evasion problem based on the construction of parallelotope-valued tubes. Two construction schemes for such tubes and the corresponding control strategies of avoiding the target set are studied. It is proved that under certain conditions both schemes provide particular solutions to the target evasion problem. The conditions imposed here are somewhat weaker than previously announced. Moreover, for both cases, guaranteed lower bounds are found for the deviation of the trajectory from the tube cross-sections. Here the last cross-section contains the target set by construction. The local properties of the schemes are compared.
Keywords: control system, systems with uncertainties, evasion problem, polyhedral methods
Mots-clés : parallelotopes.
@article{TIMM_2021_27_3_a7,
     author = {E. K. Kostousova},
     title = {On the polyhedral method of control synthesis in the problem of target evasion in discrete-time systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {101--114},
     year = {2021},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a7/}
}
TY  - JOUR
AU  - E. K. Kostousova
TI  - On the polyhedral method of control synthesis in the problem of target evasion in discrete-time systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 101
EP  - 114
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a7/
LA  - ru
ID  - TIMM_2021_27_3_a7
ER  - 
%0 Journal Article
%A E. K. Kostousova
%T On the polyhedral method of control synthesis in the problem of target evasion in discrete-time systems
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 101-114
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a7/
%G ru
%F TIMM_2021_27_3_a7
E. K. Kostousova. On the polyhedral method of control synthesis in the problem of target evasion in discrete-time systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 101-114. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a7/

[1] Krasovskii N.N., Subbotin A.I., Game-theoretical control problems, Springer, New York, 1988, 517 pp. | Zbl

[2] Kurzhanski A.B., Valyi I., Ellipsoidal calculus for estimation and control, Birkhauser, Boston, 1997, 321 pp. | Zbl

[3] Kurzhanski A.B., Varaiya P., Dynamics and control of trajectory tubes: theory and computation, Systems Control: Foundations Applications, 85, Birkhauser, Basel, 2014, 445 pp. | DOI

[4] Taras'ev A.M., Tokmantsev T.B., Uspenskii A.A., Ushakov V.N., “On procedures for constructing solutions in differential games on a finite interval of time”, J. Math. Sci., 139:5 (2006), 6954–6975 | DOI | Zbl

[5] Bertsekas D.P., Rhodes I.B., “On the minimax reachability of target sets and target tubes”, Automatica, 7:2 (1971), 233–247 | DOI | Zbl

[6] Zarkh M.A., Patsko B.C., “Strategiya vtorogo igroka v lineinoi differentsialnoi igre”, Prikl. matematika i mekhanika, 51:2 (1987), 193–200 | Zbl

[7] Botkin N., Martynov K., Turova V., Diepolder J., “Generation of dangerous disturbances for flight systems”, Dynamic Games and Applications, 9:3 (2019), 628–651 | DOI | Zbl

[8] Esterhuizen W., Wang Q., “Control design with guaranteed transient performance: An approach with polyhedral target tubes”, Automatica, 119 (2020), 109097 | DOI | Zbl

[9] Matviichuk A.R., Ukhobotov V.I., Ushakov A.V., Ushakov V.N., “Zadacha o sblizhenii nelineinoi upravlyaemoi sistemy na konechnom promezhutke vremeni”, Prikl. matematika i mekhanika, 81:2 (2017), 165–187 | Zbl

[10] Chernousko F.L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem. Metod ellipsoidov, Nauka, M., 1988, 319 pp.

[11] Filippova T.F., “Control and estimation for a class of impulsive dynamical systems”, Ural Math. J., 5:2 (2019), 21–30 | DOI | Zbl

[12] Kostousova E.K., “Outer polyhedral estimates for attainability sets of systems with bilinear uncertainty”, J. Appl. Math. Mech., 66:4 (2002), 547–558 | DOI | Zbl

[13] Kurzhanskiy A.A., Varaiya P., “Reach set computation and control synthesis for discrete-time dynamical systems with disturbances”, Automatica, 47:7 (2011), 1414–1426 | DOI | Zbl

[14] Kostousova E.K., “On target control synthesis under set-membership uncertainties using polyhedral techniques”, IFIP Advances in Information and Communication Technology, 443 (2014), 170–180 | DOI | Zbl

[15] Kostousova E.K., “On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints”, Discrete and Continuous Dynamical Systems, 38:12 (2018), 6149–6162 | DOI

[16] Martynov K., Botkin N., Turova V., Diepolder J., “Real-time control of aircraft take-off in windshear. Part I: Aircraft model and control schemes”, 25th Mediterranean Conference on Control and Automation (MED 2017), Proc. (July 3-6, 2017, Valletta, Malta), IEEE Xplore Digital Library, 2017, 277–284 | DOI

[17] Martynov K., Botkin N., Turova V., Diepolder J., “Quick construction of dangerous disturbances in conflict control problems”, Annals of the International Society of Dynamic Games, 17 (2020), 3–24 | DOI

[18] Kostousova E.K., “On a polyhedral method for solving an evasion problem for linear discrete-time systems”, 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB), proceedings (June 3–5, 2020, Moscow, Russia), IEEE Xplore Digital Library, 2020, 4 pp. | DOI | Zbl

[19] Lankaster P., Teoriya matrits, Nauka, M., 1982, 272 pp.

[20] Gantmakher F.R., Teoriya matrits, Fizmatlit, M., 2010, 560 pp.