@article{TIMM_2021_27_3_a6,
author = {V. N. Kolokoltsov and M. S. Troeva},
title = {Fractional {McKean{\textendash}Vlasov} and {Hamilton{\textendash}Jacobi{\textendash}Bellman{\textendash}Isaacs} {Equations}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {87--100},
year = {2021},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a6/}
}
TY - JOUR AU - V. N. Kolokoltsov AU - M. S. Troeva TI - Fractional McKean–Vlasov and Hamilton–Jacobi–Bellman–Isaacs Equations JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 87 EP - 100 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a6/ LA - ru ID - TIMM_2021_27_3_a6 ER -
V. N. Kolokoltsov; M. S. Troeva. Fractional McKean–Vlasov and Hamilton–Jacobi–Bellman–Isaacs Equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 87-100. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a6/
[1] Atanackovic T., Dolicanin D., Pilipovic S., Stankovic B., “Cauchy problems for some classes of linear fractional differential equations”, Fract. Calc. Appl. Anal., 17:4 (2014), 1039–1059 | DOI | Zbl
[2] Baleanu D., Diethelm K., Scalas E., Trujillo J.J., Fractional calculus: Models and numerical methods, Ser. on Complexity, Nonlinearity and Chaos, 5, Second edition, World Scientific, Singapore, 2016, 476 pp. | DOI
[3] Barbu V., Da Prato G., Hamilton-Jacobi Equations in Hilbert spaces, Research Notes in Math. Ser., 86, Pitman, London, 1983, 172 pp. | Zbl
[4] Crandall M.G., Lions P.-L., “Viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | Zbl
[5] Crisan D., McMurray E., “Smoothing properties of McKean-Vlasov SDEs”, Probab. Theory Related Fields, 171:1–2 (2018), 97–148 | DOI | Zbl
[6] Dawson D., Vaillancourt J., “Stochastic McKean-Vlasov equations”, NoDEA, Nonlinear Differ. Equ. Appl., 2:2 (1995), 199–229 | DOI | Zbl
[7] Hernandez-Hernandez M.E., Kolokoltsov V. N., Toniazzi L., “Generalized fractional evolution of Caputo type”, Chaos Solitons Fractals, 102 (2017), 184–196 | DOI | Zbl
[8] Kilbas A., “Hadamard-type fractional calculus”, J. Korean Math. Soc., 38:6 (2001), 1191–1204 | Zbl
[9] Kiryakova V., Generalized fractional calculus and applications, Pitman Research Notes in Math. Ser., 301, Longman Scientific Technical, Harlow; NY, 1993, 388 pp.
[10] Kochubei A.N., Kondratiev Y., “Fractional kinetic hierarchies and intermittency”, Kinet. Relat. Models, 10:3 (2017), 725–740 | DOI | Zbl
[11] Kochubei A., Luchko Yu., Handbook of fractional calculus with applications, v. 2, Fractional differential equations, De Gruyter, Berlin; Boston, 2019, 519 pp. | DOI
[12] Kolokoltsov V.N., “Generalized continuous-time random walks, subordination by hitting times, and fractional dynamics”, Theory of Probability Its Applications, 53:4 (2009), 594–609 | DOI | Zbl
[13] Kolokoltsov V.N., Nonlinear Markov processes and kinetic equations, Cambridge Tracks in Math., 182, Cambridge Univ. Press, Cambridge, 2010, 375 pp. | Zbl
[14] Kolokoltsov V.N., “On fully mixed and multidimensional extensions of the Caputo and Riemann–Liouville derivatives, related Markov processes and fractional differential equations”, Fract. Calc. Appl. Anal., 18:4 (2015), 1039–1073, arXiv: 1501.03925 | DOI | Zbl
[15] Kolokoltsov V.N., Differential equations on measures and functional spaces, Birkhauser Advanced Texts, Birkhauser, 2019, 536 pp. | DOI | Zbl
[16] Kolokoltsov V.N., Troeva M., “Regularity and Sensitivity for McKean-Vlasov type SPDEs generated by stable-like processes”, Probl. Anal. Issues Anal., 7(25):2 (2018), 69–81 | DOI | Zbl
[17] Kolokoltsov V.N., Troeva M., “On mean field games with common noise and McKean-Vlasov SPDEs”, Stoch. Anal. Appl., 37:4 (2019), 522–549 | DOI | Zbl
[18] Kolokoltsov V.N., Troeva M., “Abstract McKean–Vlasov and HJB equations, their fractional versions and related forward-backward systems on Riemannian manifolds”, 2021, 23 pp., arXiv: 2103.05359
[19] Kolokoltsov V.N., Veretennikova M., “Fractional Hamilton Jacobi Bellman equations for scaled limits of controlled Continuous Time Random Walks”, Commun. Appl. Ind. Math., 6:1 (2014), e-484 | DOI
[20] Kolokoltsov V.N., Veretennikova M., “Well-posedness and regularity of the Cauchy problem for nonlinear fractional in time and space equations”, Fract. Differ. Calc., 4:1 (2014), 1–30, arXiv: 1402.6735 | DOI | Zbl
[21] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer, NY, 1988, 517 pp. | Zbl
[22] Kurtz Th., Xiong J., “Particle representations for a class of nonlinear SPDEs”, Stochastic Process. Appl., 83:1 (1999), 103–126 | DOI | Zbl
[23] Leonenko N.N., Meerschaert M.M., Sikorskii A., “Correlation structure of fractional Pearson diffusions”, Comput. Math. Appl., 66:5 (2013), 737–745 | DOI | Zbl
[24] Meerschaert M., Nane E., Vellaisamy P., “Fractional Cauchy problems on bounded domains”, The Annals of Probability, 37:3 (2009), 979–1007 | DOI | Zbl
[25] Pskhu A.V., “Nachalnaya zadacha dlya lineinogo obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Mat. sb., 202:4 (2011), 111–122 | Zbl
[26] Podlubny I., Fractional differential equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Math. Sci. Eng., 198, Acad. Press, San Diego, 1999, 340 pp. | Zbl
[27] Subbotin A.I., Generalized solutions of first order PDEs. The Dynamical optimization perspective, Birkhauser, Boston, 1995, 314 pp. | DOI
[28] Subbotina N.N., Kolpakova E.A., Tokmantsev T.B., Shagalova L.G., Metod kharakteristik dlya uravneniya Gamiltona–Yakobi–Bellmana, RIO UrO RAN, Ekaterinburg, 2013, 244 pp.
[29] Tarasov V.E., Fractional dynamics. Applications of fractional calculus to dynamics of particles, fields and media, Nonlinear Physical Science, Springer-Verlag, Berlin; Heidelberg, 2011, 505 pp. | DOI
[30] Uchaikin V.V., Fractional derivatives for physicists and engineers, Springer, Berlin; Heidelberg, 2013 | DOI | Zbl
[31] Veretennikov A.Yu., “On ergodic measures for McKean-Vlasov stochastic equations”, Monte Carlo and Quasi-Monte Carlo Methods, eds. H. Niederreiter, D. Talay, Springer, Berlin; Heidelberg, 2006, 471–486 | DOI | Zbl
[32] Zhou U., Fractional evolution equations and inclusions: analysis and control, Elsevier, London, 2016, 294 pp. | Zbl