Voir la notice du chapitre de livre
Mots-clés : Germeier convolution.
@article{TIMM_2021_27_3_a5,
author = {V. I. Zhukovskii and K. N. Kudryavtsev},
title = {On one hybrid equilibrium},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {71--86},
year = {2021},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a5/}
}
V. I. Zhukovskii; K. N. Kudryavtsev. On one hybrid equilibrium. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 71-86. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a5/
[1] Nash J., “Equillibrium points in $N$-person games”, Proc. Nat. Academ. Sci. USA, 36:1 (1950), 48–49 | DOI | Zbl
[2] Nash J., “Non-cooperative games”, Ann. Mathematics, 54:2 (1951), 286–295 | DOI | Zbl
[3] Zhukovskiy V.I., “Some problems of non-antagonistic differential games”, Mathematical Methods in Operations Research, Proc., ed. P. Kenderov, Bulgaria Academy of Sciences, Sofia, 1985, 103–195
[4] Berge C., Theorie generale des jeux a n personnes, Gauthier-Villar, Paris, 1957, 114 pp.
[5] Vaisman K.S., Ravnovesie po Berzhu, avtoref. dis. ...kand. fiz.-mat. nauk, Izd-vo C.-Peterb. gos. un-ta, SPb, 1995
[6] Vaisman K.S., “Ravnovesie po Berzhu v odnoi differentsialnoi igre”, Slozhnye dinamicheskie sistemy, sb. nauch. tr., Izd-vo Pskov. pedagog. in-ta, Pskov, 1994, 58–63
[7] Vaisman K.S., “Suschestvovanie garantirovannogo ravnovesiya po Berzhu v odnoi differentsialnoi igre”, Pontryaginskie chteniya-VI, tez. dokl., Voronezh, 1995, 19
[8] Vaisman K.S., Aimukhanov N.Zh., “Ravnovesie po Berzhu v differentsialno-raznostnoi igre”, Slozhnye upravlyaemye sistemy, mezhvuz. sb. nauch. tr., RosZITLP, M., 1996, 90–93
[9] Vaisman K.S., Zhukovskii V.I., “Svoistva ravnovesiya po Berzhu”, Tezisy dokl. V shkoly “Matematicheskie problemy ekologii”, Chita, 1994, 27–28
[10] Vaisman K.S., Zhukovskii V.I., “Struktura ravnovesnykh po Berzhu reshenii”, Tezisy dokl. VMSh “Pontryaginskie chteniya-V”, Voronezh, 1994, 29
[11] Zhukovskiy V.I., Vaisman K.S., “About one solution in non-cooperative game”, Game Theory and Economics, Abstr. of N.N. Vorob'ev Memorial Conf., St.-Petersburg, 1996, 77
[12] Guseinov A.A., Zhukovskii V.I., Kudryavtsev K.N., Matematicheskie osnovy Zolotogo pravila. Teoriya novogo, altruisticheskogo uravnoveshivaniya konfliktov v protivopolozhnost “egoisticheskomu” ravnovesiyu po Neshu, URSS, M., 2016, 280 pp.
[13] Bryant J., “A simple rational expectations Keynes type model”, Quarterly J. Economics, 98:3 (1983), 525–529 | DOI
[14] Zhukovskii V.I., Kudryavtsev K.N., “Pareto-ravnovesnye situatsii: dostatochnye usloviya i suschestvovanie v smeshannykh strategiyakh”, Matematicheskaya teorii igr i ee prilozheniya, 7:1 (2015), 74–91 | Zbl
[15] Zhukovskii V.I., Kudryavtsev K.N., “Matematicheskie osnovy Zolotogo pravila. I. Staticheskii variant”, Matematicheskaya teorii igr i ee prilozheniya, 7:3 (2015), 16–47 | Zbl
[16] Zhukovskiy V.I., Zhukovskaya L.V., Kudryavtsev K.N., Larbani M., “Strong coalitional equilibria in games under uncertainty”, Vest. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 30:2 (2020), 189–207 | DOI
[17] Germeier Yu.B., Vvedenie v teoriyu issledovaniya operatsii, Nauka, M., 1971, 383 pp.
[18] Germeier Yu.B., Igry s neprotivopolozhnymi interesami, Nauka, M., 1976, 327 pp.
[19] Morozov V.V, Sukharev A.G., Fedorov V.V., Issledovanie operatsii v zadachakh i uprazhneniyakh, Nauka, M., 1986, 285 pp.
[20] Borel E., “La theorie du jeu et les equations integrales a noyau symetrique”, Compes Rendus de l'Academic des Sciences, 173 (1921), 1304–1308 | Zbl
[21] Neumann J. von, “Zur Theorie der Gesellschaftspiele”, Math. Ann., 100 (1928), 295–320 | DOI | Zbl
[22] Lyusternik L.A., Sobolev V.I., Elementy funktsionalnogo analiza, Nauka, M., 1969
[23] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp.
[24] Dmitruk A.V., Vypuklyi analiz. Elementarnyi vvodnyi kurs, MAKS-PRESS, M., 2012, 520 pp.
[25] Glicksberg I.L., “A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points”, Proc. Amer. Math. Soc., 3:1 (1952), 170–174
[26] Zhukovskii V.I., Kudryavtsev K.N., “Uravnoveshivanie konfliktov pri neopredelennosti. II. Analog maksimina”, Matematicheskaya teoriya igr i ee prilozheniya, 5:2 (2015), 3–45