On one hybrid equilibrium
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 71-86
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The notion of $BN$-hybrid equilibrium is proposed for a noncooperative $N$-person game. It is assumed that each player belongs to one of two classes: altruists and pragmatists. The altruists and the pragmatists choose their strategies using the concepts of the Berge equilibrium and the Nash equilibrium, respectively. Using a specially constructed Germeier convolution based on payoff functions, we obtain sufficient conditions for the existence of a $BN$-hybrid equilibrium. For an extension of the game with mixed strategies, a theorem on the existence of a $BN$-hybrid equilibrium is proved under constraints standard for mathematical game theory, namely, under the assumptions that the sets of the players' strategies are convex and compact and their payoff functions are continuous. The proposed concept is extended to noncooperative $N$-person games under interval uncertainty. An existence theorem is given for a strongly guaranteed $N$-hybrid equilibrium in mixed strategies.
Keywords: Nash equilibrium, Berge equilibrium, uncertainty
Mots-clés : Germeier convolution.
@article{TIMM_2021_27_3_a5,
     author = {V. I. Zhukovskii and K. N. Kudryavtsev},
     title = {On one hybrid equilibrium},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {71--86},
     year = {2021},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a5/}
}
TY  - JOUR
AU  - V. I. Zhukovskii
AU  - K. N. Kudryavtsev
TI  - On one hybrid equilibrium
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 71
EP  - 86
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a5/
LA  - ru
ID  - TIMM_2021_27_3_a5
ER  - 
%0 Journal Article
%A V. I. Zhukovskii
%A K. N. Kudryavtsev
%T On one hybrid equilibrium
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 71-86
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a5/
%G ru
%F TIMM_2021_27_3_a5
V. I. Zhukovskii; K. N. Kudryavtsev. On one hybrid equilibrium. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 71-86. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a5/

[1] Nash J., “Equillibrium points in $N$-person games”, Proc. Nat. Academ. Sci. USA, 36:1 (1950), 48–49 | DOI | Zbl

[2] Nash J., “Non-cooperative games”, Ann. Mathematics, 54:2 (1951), 286–295 | DOI | Zbl

[3] Zhukovskiy V.I., “Some problems of non-antagonistic differential games”, Mathematical Methods in Operations Research, Proc., ed. P. Kenderov, Bulgaria Academy of Sciences, Sofia, 1985, 103–195

[4] Berge C., Theorie generale des jeux a n personnes, Gauthier-Villar, Paris, 1957, 114 pp.

[5] Vaisman K.S., Ravnovesie po Berzhu, avtoref. dis. ...kand. fiz.-mat. nauk, Izd-vo C.-Peterb. gos. un-ta, SPb, 1995

[6] Vaisman K.S., “Ravnovesie po Berzhu v odnoi differentsialnoi igre”, Slozhnye dinamicheskie sistemy, sb. nauch. tr., Izd-vo Pskov. pedagog. in-ta, Pskov, 1994, 58–63

[7] Vaisman K.S., “Suschestvovanie garantirovannogo ravnovesiya po Berzhu v odnoi differentsialnoi igre”, Pontryaginskie chteniya-VI, tez. dokl., Voronezh, 1995, 19

[8] Vaisman K.S., Aimukhanov N.Zh., “Ravnovesie po Berzhu v differentsialno-raznostnoi igre”, Slozhnye upravlyaemye sistemy, mezhvuz. sb. nauch. tr., RosZITLP, M., 1996, 90–93

[9] Vaisman K.S., Zhukovskii V.I., “Svoistva ravnovesiya po Berzhu”, Tezisy dokl. V shkoly “Matematicheskie problemy ekologii”, Chita, 1994, 27–28

[10] Vaisman K.S., Zhukovskii V.I., “Struktura ravnovesnykh po Berzhu reshenii”, Tezisy dokl. VMSh “Pontryaginskie chteniya-V”, Voronezh, 1994, 29

[11] Zhukovskiy V.I., Vaisman K.S., “About one solution in non-cooperative game”, Game Theory and Economics, Abstr. of N.N. Vorob'ev Memorial Conf., St.-Petersburg, 1996, 77

[12] Guseinov A.A., Zhukovskii V.I., Kudryavtsev K.N., Matematicheskie osnovy Zolotogo pravila. Teoriya novogo, altruisticheskogo uravnoveshivaniya konfliktov v protivopolozhnost “egoisticheskomu” ravnovesiyu po Neshu, URSS, M., 2016, 280 pp.

[13] Bryant J., “A simple rational expectations Keynes type model”, Quarterly J. Economics, 98:3 (1983), 525–529 | DOI

[14] Zhukovskii V.I., Kudryavtsev K.N., “Pareto-ravnovesnye situatsii: dostatochnye usloviya i suschestvovanie v smeshannykh strategiyakh”, Matematicheskaya teorii igr i ee prilozheniya, 7:1 (2015), 74–91 | Zbl

[15] Zhukovskii V.I., Kudryavtsev K.N., “Matematicheskie osnovy Zolotogo pravila. I. Staticheskii variant”, Matematicheskaya teorii igr i ee prilozheniya, 7:3 (2015), 16–47 | Zbl

[16] Zhukovskiy V.I., Zhukovskaya L.V., Kudryavtsev K.N., Larbani M., “Strong coalitional equilibria in games under uncertainty”, Vest. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 30:2 (2020), 189–207 | DOI

[17] Germeier Yu.B., Vvedenie v teoriyu issledovaniya operatsii, Nauka, M., 1971, 383 pp.

[18] Germeier Yu.B., Igry s neprotivopolozhnymi interesami, Nauka, M., 1976, 327 pp.

[19] Morozov V.V, Sukharev A.G., Fedorov V.V., Issledovanie operatsii v zadachakh i uprazhneniyakh, Nauka, M., 1986, 285 pp.

[20] Borel E., “La theorie du jeu et les equations integrales a noyau symetrique”, Compes Rendus de l'Academic des Sciences, 173 (1921), 1304–1308 | Zbl

[21] Neumann J. von, “Zur Theorie der Gesellschaftspiele”, Math. Ann., 100 (1928), 295–320 | DOI | Zbl

[22] Lyusternik L.A., Sobolev V.I., Elementy funktsionalnogo analiza, Nauka, M., 1969

[23] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp.

[24] Dmitruk A.V., Vypuklyi analiz. Elementarnyi vvodnyi kurs, MAKS-PRESS, M., 2012, 520 pp.

[25] Glicksberg I.L., “A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points”, Proc. Amer. Math. Soc., 3:1 (1952), 170–174

[26] Zhukovskii V.I., Kudryavtsev K.N., “Uravnoveshivanie konfliktov pri neopredelennosti. II. Analog maksimina”, Matematicheskaya teoriya igr i ee prilozheniya, 5:2 (2015), 3–45