On the Method of Penalty Functions for Control Systems with State Constraints under Integral Constraints on the Control
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 59-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a nonlinear control system with state constraints. The system is linear in the control variables, and the control constraints are given by a quadratic integral inequality. A procedure for eliminating the state constraints is proposed for the approximate construction of the reachable set. The procedure is based on introducing an auxiliary unconstrained control system whose right-hand side depends on a small parameter. Under certain conditions on the behavior of the velocities of the system at the boundary of the state constraints, we prove the convergence of the reachable sets of the auxiliary system to the reachable set of the original system in the Hausdorff metric as the small parameter tends to zero. The results of numerical simulation are presented.
Keywords: control system, integral constraints, reachable set, state constraints.
@article{TIMM_2021_27_3_a4,
     author = {M. I. Gusev},
     title = {On the {Method} of {Penalty} {Functions} for {Control} {Systems} with {State} {Constraints} under {Integral} {Constraints} on the {Control}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {59--70},
     year = {2021},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a4/}
}
TY  - JOUR
AU  - M. I. Gusev
TI  - On the Method of Penalty Functions for Control Systems with State Constraints under Integral Constraints on the Control
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 59
EP  - 70
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a4/
LA  - ru
ID  - TIMM_2021_27_3_a4
ER  - 
%0 Journal Article
%A M. I. Gusev
%T On the Method of Penalty Functions for Control Systems with State Constraints under Integral Constraints on the Control
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 59-70
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a4/
%G ru
%F TIMM_2021_27_3_a4
M. I. Gusev. On the Method of Penalty Functions for Control Systems with State Constraints under Integral Constraints on the Control. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 59-70. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a4/

[1] Kurzhanskii A.B., Filippova T.F., “Ob opisanii puchka vyzhivayuschikh traektorii upravlyaemoi sistemy”, Differents.uravneniya, 23:8 (1987), 1303–1315

[2] Aseev S.M., “Zadacha optimalnogo upravleniya dlya differentsialnogo vklyucheniya s fazovym ogranicheniem. Gladkie approksimatsii i neobkhodimye usloviya optimalnosti”, Tr. Mezhdunar. konf., posvyaschennoi 90-letiyu so dnya rozhdeniya L. S. Pontryagina (Moskva, 31 avgusta - 6 sentyabrya 1998 g.), v. 3, Itogi nauki i tekhniki. Ser. Sovrem. mat. i ee pril. Temat. obz., 64, Geometricheskaya teoriya upravleniya, VINITI, M., 1999, 57–81 | Zbl

[3] Gusev M.I., “On reachability analysis for nonlinear control systems with state constraints”, DCDS Suppl., 2015, Iss. special (2015), 579–587 | DOI | Zbl

[4] Bressan A., Facchi G., “Trajectories of differential inclusions with state constraints”, J. Diff. Eq., 250:4 (2011), 2267–2281 | DOI | Zbl

[5] Gusev M.I., “O metode shtrafnykh funktsii v zadache postroeniya mnozhestv dostizhimosti upravlyaemykh sistem s fazovymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:1 (2013), 81–86

[6] Gusev M.I., “Vnutrennie approksimatsii mnozhestv dostizhimosti upravlyaemykh sistem s fazovymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:4 (2013), 73–88

[7] Darin A.N., Kurzhanskii A.B., “Upravlenie v usloviyakh neopredelennosti pri dvoinykh ogranicheniyakh”, Differents. uravneniya, 39:11 (2003), 1474–1486

[8] Subbotin A.I., Ushakov V.N., “Alternativa dlya differentsialnoi igry sblizheniya-ukloneniya pri integralnykh ogranicheniyakh na upravleniya igrokov”, Prikl. matematika i mekhanika, 39:3 (1975), 387–396 | Zbl

[9] Ukhobotov V.I., “Ob odnom klasse differentsialnykh igr s integralnymi ogranicheniyami”, Prikl. matematika i mekhanika, 41:5 (1977), 819–824

[10] Polyak B.T., “Sonvexity of the reachable set of nonlinear systems under l2 bounded controls”, Dynamics of Continuous, Discrete and Impulsive Systems Ser. A: Math. Anal., 11:2-3 (2004), 255–267 | Zbl

[11] Huseyin N., Huseyin A., “Compactness of the set of trajectories of the controllable system described by an affineintegral equation”, Appl. Math. Comp., 219:16 (2013), 8416–8424 | DOI | Zbl

[12] Guseinov K.G., Ozer O., Akyar E., Ushakov V.N., “The approximation of reachable sets of control systems with integral constraint on controls”, Nonlinear Diff. Eq. Appl., 14:1–2 (2007), 57–73 | DOI | Zbl

[13] Guseinov Kh.G., “Approximation of the attainable sets of the nonlinear control systems with integral constraint on controls”, Nonlinear Analysis: Theory, Methods Applications, 71:1–2 (2009), 622–645 | DOI | Zbl

[14] Kostousova E.K., “State estimates of bilinear discrete-time systems with integral constraints through polyhedral techniques”, IFAC-PapersOnLine, 51:32 (2018), 245–250 | DOI

[15] Rousse R., Garoche P.L., Henrion D., “Parabolic set simulation for reachability analysis of linear time-invariant systems with integral quadratic constraint”, European J. Control, 58 (2021), 152–167 | DOI | Zbl

[16] Ananev B.I., Gusev M.I., Filippova T.F., Upravlenie i otsenivanie sostoyanii dinamicheskikh sistem s neopredelennostyu, Izd-vo SO RAN, Novosibirsk, 2018, 193 pp.

[17] Sontag E.D., “A “universal” construction of Artstein's theorem on nonlinear stabilization”, System and Control Letter, 13:2 (1989), 117–123 | DOI | Zbl

[18] Kurzhanski A.B., Varaiya P., Dynamics and control of trajectory tubes. Theory and computation, Ser. Systems Control: Foundations Applications, 85, Birkhauser, Basel, 2014, 445 pp. | DOI

[19] Baier R., Gerdts M., Xausa I., “Approximation of reachable sets using optimal control algorithms”, Numerical Algebra, Control and Optimization, 3:3 (2013), 519–548 | DOI | Zbl

[20] Helsen R., Van Kampen E.-J., De Visser C., Chu Q.P., “Distance-fields-over-grids method for aircraft envelope determination”, J. Guidance Control and Dynamics, 39:7 (2016), 1–11 | DOI

[21] Rasmussen M., Rieger J., Webster K.N., “Approximation of reachable sets using optimal control and support vector machines”, J. Comp. Appl. Math., 311 (2017), 68–83 | DOI | Zbl

[22] Subbotin A.I., Generalized solutions of first-order PDE's. The Dynamic optimization Perspective, Birkhauser, Boston, 1995, 314 pp. | DOI

[23] Bardi M., Capuzzo-Dolcetta I., Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Birkhauser, Boston, 1997, 574 pp. | DOI | Zbl