@article{TIMM_2021_27_3_a4,
author = {M. I. Gusev},
title = {On the {Method} of {Penalty} {Functions} for {Control} {Systems} with {State} {Constraints} under {Integral} {Constraints} on the {Control}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {59--70},
year = {2021},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a4/}
}
TY - JOUR AU - M. I. Gusev TI - On the Method of Penalty Functions for Control Systems with State Constraints under Integral Constraints on the Control JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 59 EP - 70 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a4/ LA - ru ID - TIMM_2021_27_3_a4 ER -
%0 Journal Article %A M. I. Gusev %T On the Method of Penalty Functions for Control Systems with State Constraints under Integral Constraints on the Control %J Trudy Instituta matematiki i mehaniki %D 2021 %P 59-70 %V 27 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a4/ %G ru %F TIMM_2021_27_3_a4
M. I. Gusev. On the Method of Penalty Functions for Control Systems with State Constraints under Integral Constraints on the Control. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 59-70. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a4/
[1] Kurzhanskii A.B., Filippova T.F., “Ob opisanii puchka vyzhivayuschikh traektorii upravlyaemoi sistemy”, Differents.uravneniya, 23:8 (1987), 1303–1315
[2] Aseev S.M., “Zadacha optimalnogo upravleniya dlya differentsialnogo vklyucheniya s fazovym ogranicheniem. Gladkie approksimatsii i neobkhodimye usloviya optimalnosti”, Tr. Mezhdunar. konf., posvyaschennoi 90-letiyu so dnya rozhdeniya L. S. Pontryagina (Moskva, 31 avgusta - 6 sentyabrya 1998 g.), v. 3, Itogi nauki i tekhniki. Ser. Sovrem. mat. i ee pril. Temat. obz., 64, Geometricheskaya teoriya upravleniya, VINITI, M., 1999, 57–81 | Zbl
[3] Gusev M.I., “On reachability analysis for nonlinear control systems with state constraints”, DCDS Suppl., 2015, Iss. special (2015), 579–587 | DOI | Zbl
[4] Bressan A., Facchi G., “Trajectories of differential inclusions with state constraints”, J. Diff. Eq., 250:4 (2011), 2267–2281 | DOI | Zbl
[5] Gusev M.I., “O metode shtrafnykh funktsii v zadache postroeniya mnozhestv dostizhimosti upravlyaemykh sistem s fazovymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:1 (2013), 81–86
[6] Gusev M.I., “Vnutrennie approksimatsii mnozhestv dostizhimosti upravlyaemykh sistem s fazovymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:4 (2013), 73–88
[7] Darin A.N., Kurzhanskii A.B., “Upravlenie v usloviyakh neopredelennosti pri dvoinykh ogranicheniyakh”, Differents. uravneniya, 39:11 (2003), 1474–1486
[8] Subbotin A.I., Ushakov V.N., “Alternativa dlya differentsialnoi igry sblizheniya-ukloneniya pri integralnykh ogranicheniyakh na upravleniya igrokov”, Prikl. matematika i mekhanika, 39:3 (1975), 387–396 | Zbl
[9] Ukhobotov V.I., “Ob odnom klasse differentsialnykh igr s integralnymi ogranicheniyami”, Prikl. matematika i mekhanika, 41:5 (1977), 819–824
[10] Polyak B.T., “Sonvexity of the reachable set of nonlinear systems under l2 bounded controls”, Dynamics of Continuous, Discrete and Impulsive Systems Ser. A: Math. Anal., 11:2-3 (2004), 255–267 | Zbl
[11] Huseyin N., Huseyin A., “Compactness of the set of trajectories of the controllable system described by an affineintegral equation”, Appl. Math. Comp., 219:16 (2013), 8416–8424 | DOI | Zbl
[12] Guseinov K.G., Ozer O., Akyar E., Ushakov V.N., “The approximation of reachable sets of control systems with integral constraint on controls”, Nonlinear Diff. Eq. Appl., 14:1–2 (2007), 57–73 | DOI | Zbl
[13] Guseinov Kh.G., “Approximation of the attainable sets of the nonlinear control systems with integral constraint on controls”, Nonlinear Analysis: Theory, Methods Applications, 71:1–2 (2009), 622–645 | DOI | Zbl
[14] Kostousova E.K., “State estimates of bilinear discrete-time systems with integral constraints through polyhedral techniques”, IFAC-PapersOnLine, 51:32 (2018), 245–250 | DOI
[15] Rousse R., Garoche P.L., Henrion D., “Parabolic set simulation for reachability analysis of linear time-invariant systems with integral quadratic constraint”, European J. Control, 58 (2021), 152–167 | DOI | Zbl
[16] Ananev B.I., Gusev M.I., Filippova T.F., Upravlenie i otsenivanie sostoyanii dinamicheskikh sistem s neopredelennostyu, Izd-vo SO RAN, Novosibirsk, 2018, 193 pp.
[17] Sontag E.D., “A “universal” construction of Artstein's theorem on nonlinear stabilization”, System and Control Letter, 13:2 (1989), 117–123 | DOI | Zbl
[18] Kurzhanski A.B., Varaiya P., Dynamics and control of trajectory tubes. Theory and computation, Ser. Systems Control: Foundations Applications, 85, Birkhauser, Basel, 2014, 445 pp. | DOI
[19] Baier R., Gerdts M., Xausa I., “Approximation of reachable sets using optimal control algorithms”, Numerical Algebra, Control and Optimization, 3:3 (2013), 519–548 | DOI | Zbl
[20] Helsen R., Van Kampen E.-J., De Visser C., Chu Q.P., “Distance-fields-over-grids method for aircraft envelope determination”, J. Guidance Control and Dynamics, 39:7 (2016), 1–11 | DOI
[21] Rasmussen M., Rieger J., Webster K.N., “Approximation of reachable sets using optimal control and support vector machines”, J. Comp. Appl. Math., 311 (2017), 68–83 | DOI | Zbl
[22] Subbotin A.I., Generalized solutions of first-order PDE's. The Dynamic optimization Perspective, Birkhauser, Boston, 1995, 314 pp. | DOI
[23] Bardi M., Capuzzo-Dolcetta I., Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Birkhauser, Boston, 1997, 574 pp. | DOI | Zbl