@article{TIMM_2021_27_3_a3,
author = {N. L. Grigorenko and E. N. Khailov and E. V. Grigorieva and A. D. Klimenkova},
title = {Optimal strategies of {CAR} {T-Cell} therapy in the treatment of leukemia within the {Lotka-Volterra} predator-prey model},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {43--58},
year = {2021},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a3/}
}
TY - JOUR AU - N. L. Grigorenko AU - E. N. Khailov AU - E. V. Grigorieva AU - A. D. Klimenkova TI - Optimal strategies of CAR T-Cell therapy in the treatment of leukemia within the Lotka-Volterra predator-prey model JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 43 EP - 58 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a3/ LA - ru ID - TIMM_2021_27_3_a3 ER -
%0 Journal Article %A N. L. Grigorenko %A E. N. Khailov %A E. V. Grigorieva %A A. D. Klimenkova %T Optimal strategies of CAR T-Cell therapy in the treatment of leukemia within the Lotka-Volterra predator-prey model %J Trudy Instituta matematiki i mehaniki %D 2021 %P 43-58 %V 27 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a3/ %G ru %F TIMM_2021_27_3_a3
N. L. Grigorenko; E. N. Khailov; E. V. Grigorieva; A. D. Klimenkova. Optimal strategies of CAR T-Cell therapy in the treatment of leukemia within the Lotka-Volterra predator-prey model. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 43-58. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a3/
[1] Heymach J. [et all.], “Clinical cancer advances 2018: annual report on progress against cancer from the American Society of Clinical Oncology”, J. Clin. Oncol., 36:10 (2018), 1020–1044 | DOI
[2] June C.H., Sadelain M., “Chimeric antigen receptor therapy”, N. Engl. J. Med., 379:1 (2018), 64–73 | DOI
[3] Hopkins B., Tucker M., Pan Y., Fang N., Huang Z., “A model-based investigation of cytokine storm for T-cell therapy”, IFAC-PapersOnLine, 51:19 (2018), 76–79 | DOI
[4] Barros L.R.C., Rodrigues B.J., Almeida R.C., “CAR-T cell goes on a mathematical model”, J. Cell Immunol., 2:1 (2020), 31–37 | DOI
[5] Konstorum A., Vella A.T., Adler A.J., Laubenbacher R.C., “Addressing current challenges in cancer immunotherapy with mathematical and computational modelling”, J. Roy. Soc. Interface, 14:131 (2017), 20170150, 1–10 | DOI
[6] Valentinuzzi D., Jeraj R., “Computational modelling of modern cancer immunotherapy”, Phys. Med. Biol., 65:24 (2020), 24TR01, 1–22 | DOI
[7] Leon-Triana O., Sabir S., Calvo G.F., Belmonte-Beitia J., Chulian S., Martinez-Rubio A., Rosa M., Perez-Martinez A., Ramirez-Orellana M., Perez-Garcia V.M., “CAR T-cell in B-cell acute lymphoblastic leukaemia: insights from mathematical models”, Commun. Nonlinear Sci., 94 (2021), 105570 | DOI | Zbl
[8] Perez-Garcia V.M., Leon-Triana O., Rosa M., Perez-Martinez A., CAR T cells for T-cell leukemias: insights from mathematical models, 26 Apr 2020, 20 pp., arXiv: 2004.14291
[9] Sahoo P. [et al.], “Mathematical deconvolution of CAR T-cell proliferation and exhaustion from real-time killing assay data”, J. Roy. Soc. Interface, 17:162 (2019), 20190734, 1–10 | DOI
[10] Nichelatti M., “A mathematical model for the chimeric antigen receptor T cell (CAR-T) therapy as a Lotka-Volterra system”, J. Math. Stat. Res., 3:3 (2020), 1–4 | DOI
[11] Khailov E.N., Klimenkova A.D., Korobeinikov A., “Optimal control for anti-cancer therapy”, Extended abstracts spring 2018, Trends in mathematics, 11, eds. A. Korobeinikov, M. Caubergh, T. Lazaro, J. Sardanyes, Birkhauser, Basel, 2019, 35–43 | DOI | Zbl
[12] Grigorenko N.L., Khailov E.N., Klimenkova A.D., Korobeinikov A., “Program and positional control strategies for the Lotka-Volterra competition model”, Stability, Control and Differential Games (Proceedings of the International Conference “Stability, Control, Differential Games” (SCDG2019)), eds. A. Tarasyev, V. Maksimov, T. Filippova, Springer Nature, Cham, 2020, 39–49 | DOI | Zbl
[13] Grigorenko N.L., Khailov E.N., Grigoreva E.V., Klimenkova A.D., “Optimalnye strategii lecheniya rakovykh zabolevanii v matematicheskoi modeli konkurentsii Lotki - Volterry”, Tr. In-ta matematiki i mekhaniki UrO RAN, 26:1 (2020), 71–88 | DOI
[14] Mostolizadeh R., Afsharnezhad Z., Marciniak-Czochra A., “Mathematical model of chimeric anti-gene receptor (CAR) T cell therapy with presence of cytokine”, Numer. Algebr. Control Optim., 8:1 (2018), 63–80 | DOI | Zbl
[15] Khailov E., Grigorieva E., Klimenkova A., “Optimal CAR T-cell immunotherapy strategies for a leukemia treatment model”, Games, 11:4 (2020), 53, 1–26 | DOI
[16] Pillis L.G., Radunskaya A., “A mathematical tumor model with immune resistance and drug therapy: an optimal control approach”, J. Theoret. Medicine, 3 (2001), 79–100 | DOI | Zbl
[17] Pillis L.G., Radunskaya A., “The dynamics of an optimally controlled tumor model: a case study”, Math. Comput. Model., 37 (2003), 1221–1244 | DOI | Zbl
[18] Bazykin A.D., Nelineinaya dinamika vzaimodeistvuyuschikh populyatsii, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevskii institut kompyuternykh issledovanii, Moskva; Izhevsk, 2003, 368 pp.
[19] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.
[20] Vasilev F.P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.
[21] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp.
[22] Dmitruk A.V., “A generalized estimate on the number of zeros for solutions of a class of linear differential equations”, SIAM J. Control Optim., 30:5 (1992), 1087–1091 | DOI | Zbl
[23] Kuzenkov O.A., Ryabova E.A., Matematicheskoe modelirovanie protsessov otbora, Izd-vo Nizhnegorod. un-ta, N. Novgorod, 2007, 324 pp.
[24] Bonnans F., Martinon P., Giorgi D., Grelard V., Maindrault S., Tissot O., Liu J., BOCOP 2.2.1 - user guide, [e-resource], August 8, 2019 http://bocop.org