@article{TIMM_2021_27_3_a23,
author = {L. A. Petrosyan and D. Yeung and Y. B. Pankratova},
title = {Cooperative {Differential} {Games} with {Partner} {Sets} on {Networks}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {286--295},
year = {2021},
volume = {27},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a23/}
}
TY - JOUR AU - L. A. Petrosyan AU - D. Yeung AU - Y. B. Pankratova TI - Cooperative Differential Games with Partner Sets on Networks JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 286 EP - 295 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a23/ LA - en ID - TIMM_2021_27_3_a23 ER -
L. A. Petrosyan; D. Yeung; Y. B. Pankratova. Cooperative Differential Games with Partner Sets on Networks. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 286-295. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a23/
[1] Bulgakova M., Petrosyan L., “About one multistage non-antagonistic network game”, Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya, 5:4 (2019), 603–615 | DOI
[2] Cao H., Ertin E. and Arora A., “MiniMax equilibrium of networked differential games”, ACM Transactions on Autonomous and Adaptive Systems, 3:4 (1963) | DOI
[3] Gao H. and Pankratova Y., “Cooperation in dynamic network games”, Contributions to Game Theory and Management, 10 (2017), 42–67
[4] Gromova E., “The Shapley value as a sustainable cooperative solution in differential games of three players. Recent advances in game theory and applications”, Recent Advances in Game Theory and Applications. Static Dynamic Game Theory: Foundations Applications, eds. L.A. Petrosyan and V.V. Mazalov, Birkhauser, Cham, 2016, 67–89 | DOI | Zbl
[5] Isaacs R., Differential games, Wiley, NY, 1965, 384 pp. | Zbl
[6] Krasovskii N.N, Subbotin A.I., Pozitsionnye differentsial'nye igry [Positional differential games], Nauka, M, 1974, 456 pp.
[7] Meza M.A.G. and Lopez-Barrientos J. D., “A differential game of a duopoly with network externalities”, Recent Advances in Game Theory and Applications. Static Dynamic Game Theory: Foundations Applications, eds. L.A. Petrosyan and V.V. Mazalov, Birkhauser, Cham, 2016, 49–66 | DOI | Zbl
[8] Pai H.M., “A differential game formulation of a controlled network”, Queueing Systems: Theory and Applications Archive, 64:4 (2010), 325–358 | DOI | Zbl
[9] Petrosyan L.A., “Cooperative differential games on networks”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:5 (2010), 143–150 (in Russian)
[10] Petrosyan L., Zaccour G., “Time-consistent Shapley value allocation of pollution cost reduction”, J. Economic Dynamics and Control, 27 (2003), 381–398 | DOI | Zbl
[11] Petrosyan L. A. and Yeung D. W. K., “Shapley value for differential network games: Theory and application”, J. Dynamics and Games, 8:2 (2020), 151–166 | DOI
[12] Shapley L.S., “A value for N-person games”, Contributions to the Theory of Games, eds. H. Kuhn and A. Tucker, Princeton Univ. Press, Princeton, 1953, 307–317
[13] Tijs S.H., “An axiomatization of the $\tau$-value”, Math. Social Sciences, 13 (1987), 177–181 | DOI | Zbl
[14] Wie B.W., “A differential game model of Nash equilibrium on a congested traffic network”, Networks, 23 (1993), 557–565 | DOI | Zbl
[15] Yeung D.W.K., “Subgame consistent Shapley value imputation for cost-saving joint ventures”, Math. Game Theory Appl., 2:3 (2010), 137–149 | Zbl
[16] Yeung D.W.K. and Petrosyan L.A., “Subgame consistent cooperative solution in stochastic differential games”, J. Optim. Theory Appl., 120:3 (2004), 651–666 | DOI | Zbl
[17] Yeung D.W.K. and Petrosyan L.A., Subgame consistent cooperation: A comprehensive treatise, Springer Singapore, Singapore, 2016, 520 pp. | DOI | Zbl
[18] Yeung D.W.K. and Petrosyan L.A., Dynamic Shapley value and dynamic Nash bargaining, Nova Science, NY, 2018, 225 pp. | Zbl
[19] Zhan G.H., Jiang L.V., Huang S., Wang J., and Zhang Y., “Attack-defense differential game model for network defense strategy selection”, IEEE Access, 7 (2018), 2169–3536 | DOI