Wilcox Formula for Vector Fields on Banach Manifolds
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 271-285 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We obtain an analogue of Wilcox-Snyder formula for flows of diffeomorphisms of $C^m$-smooth vector fields on infinite-dimensional Banach manifolds. For classical linear system this formula can be efficiently used, for example, to obtain Magnus expansion of solutions. The generalized Wilcox formula is obtained by using an extended Chronological Calculus for Banach manifold. We apply this formula to derive new structured differential equations which solutions approximate solutions of the original differential equation.
Keywords: flow of diffeomorphisms, Wilcox formula, chronological calculus, Magnus expansion.
@article{TIMM_2021_27_3_a22,
     author = {Yuri S. Ledyaev},
     title = {Wilcox {Formula} for {Vector} {Fields} on {Banach} {Manifolds}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {271--285},
     year = {2021},
     volume = {27},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a22/}
}
TY  - JOUR
AU  - Yuri S. Ledyaev
TI  - Wilcox Formula for Vector Fields on Banach Manifolds
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 271
EP  - 285
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a22/
LA  - en
ID  - TIMM_2021_27_3_a22
ER  - 
%0 Journal Article
%A Yuri S. Ledyaev
%T Wilcox Formula for Vector Fields on Banach Manifolds
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 271-285
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a22/
%G en
%F TIMM_2021_27_3_a22
Yuri S. Ledyaev. Wilcox Formula for Vector Fields on Banach Manifolds. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 271-285. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a22/

[1] Math. Sb., 35:6 (1979), 727–785 | DOI | Zbl | Zbl

[2] Agrachev A.A. and Gamkrelidze R.V., “Chronological algebras and nonstationary vector fields”, J. Math. Sci., 17:1 (1981), 1650–1675 | DOI

[3] Agrachev A.A. and Sachkov Yu.L., Control theory from the geometric viewpoint, Encyclopaedia Math. Sci. Book Ser., 87, Springer-Verlag, Berlin, 2004, 412 pp. | DOI | Zbl

[4] Blanes S., Casas F., Oteo J.A., and Ros J., “The Magnus expansion and some of its applications”, Phys. Rep., 470:5–6 (2009), 151–238 | DOI

[5] Coron J.-M., Control and nonlinearity, Ser. Math. Surveys and Monographs, 136, Amer. Math. Soc., Providence, RI, 2007, 426 pp. | DOI | Zbl

[6] Deimling K., Ordinary differential equations in Banach spaces, Ser. Lecture Notes in Math., Springer-Verlag, Berlin, 1977, 140 pp. | DOI | Zbl

[7] Diestel J. and Uhl J., Vector measures, Ser. Math. Surveys and Monographs, 15, Amer. Math. Soc., Providence, RI, 1977 | DOI | Zbl

[8] Dyson F. J., “The radiation theories of Tomonaga, Schwinger, and Feynman”, Phys. Rev. (2), 75 (1949), 486–502 | DOI | Zbl

[9] Engel Kl.J. and Nagel R., One-parameter semigroups for linear evolution equations, Ser. Graduate Texts in Math., 194, Springer-Verlag, NY, 2000, 589 pp. | Zbl

[10] Kipka R. and Ledyaev Yu., “Extension of chronological calculus for dynamical systems on manifolds”, J. Diff. Eq., 258:5 (2015), 1765–1790 | DOI | Zbl

[11] Lang S., Fundamentals of differential geometry, Springer-Verlag, NY, 1999, 540 pp. | DOI | Zbl

[12] Magnus W., “On the exponential solution of differential equations for a linear operator”, Comm. Pure Appl. Math., 7 (1954), 649–673 | DOI | Zbl

[13] Rossmann W., Lie groups, Ser. Oxford Graduate Texts in Math., 5, Oxford University Press, Oxford, 2002, 265 pp. | Zbl

[14] Snider R. F., “Variational methods for solving the Boltzmann equation”, J. Chem. Phys., 41:3 (1964), 591–595 | DOI

[15] Wilcox R. M., “Exponential operators and parameter differentiation in quantum physics”, J. Math. Phys., 8:4 (1967), 962–982 | DOI | Zbl