@article{TIMM_2021_27_3_a22,
author = {Yuri S. Ledyaev},
title = {Wilcox {Formula} for {Vector} {Fields} on {Banach} {Manifolds}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {271--285},
year = {2021},
volume = {27},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a22/}
}
Yuri S. Ledyaev. Wilcox Formula for Vector Fields on Banach Manifolds. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 271-285. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a22/
[1] Math. Sb., 35:6 (1979), 727–785 | DOI | Zbl | Zbl
[2] Agrachev A.A. and Gamkrelidze R.V., “Chronological algebras and nonstationary vector fields”, J. Math. Sci., 17:1 (1981), 1650–1675 | DOI
[3] Agrachev A.A. and Sachkov Yu.L., Control theory from the geometric viewpoint, Encyclopaedia Math. Sci. Book Ser., 87, Springer-Verlag, Berlin, 2004, 412 pp. | DOI | Zbl
[4] Blanes S., Casas F., Oteo J.A., and Ros J., “The Magnus expansion and some of its applications”, Phys. Rep., 470:5–6 (2009), 151–238 | DOI
[5] Coron J.-M., Control and nonlinearity, Ser. Math. Surveys and Monographs, 136, Amer. Math. Soc., Providence, RI, 2007, 426 pp. | DOI | Zbl
[6] Deimling K., Ordinary differential equations in Banach spaces, Ser. Lecture Notes in Math., Springer-Verlag, Berlin, 1977, 140 pp. | DOI | Zbl
[7] Diestel J. and Uhl J., Vector measures, Ser. Math. Surveys and Monographs, 15, Amer. Math. Soc., Providence, RI, 1977 | DOI | Zbl
[8] Dyson F. J., “The radiation theories of Tomonaga, Schwinger, and Feynman”, Phys. Rev. (2), 75 (1949), 486–502 | DOI | Zbl
[9] Engel Kl.J. and Nagel R., One-parameter semigroups for linear evolution equations, Ser. Graduate Texts in Math., 194, Springer-Verlag, NY, 2000, 589 pp. | Zbl
[10] Kipka R. and Ledyaev Yu., “Extension of chronological calculus for dynamical systems on manifolds”, J. Diff. Eq., 258:5 (2015), 1765–1790 | DOI | Zbl
[11] Lang S., Fundamentals of differential geometry, Springer-Verlag, NY, 1999, 540 pp. | DOI | Zbl
[12] Magnus W., “On the exponential solution of differential equations for a linear operator”, Comm. Pure Appl. Math., 7 (1954), 649–673 | DOI | Zbl
[13] Rossmann W., Lie groups, Ser. Oxford Graduate Texts in Math., 5, Oxford University Press, Oxford, 2002, 265 pp. | Zbl
[14] Snider R. F., “Variational methods for solving the Boltzmann equation”, J. Chem. Phys., 41:3 (1964), 591–595 | DOI
[15] Wilcox R. M., “Exponential operators and parameter differentiation in quantum physics”, J. Math. Phys., 8:4 (1967), 962–982 | DOI | Zbl