On the Robustness Property of a Control System Described by an Urysohn Type Integral Equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 263-270 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper a control system described by an Urysohn type integral equation with an integral constraint on the control functions is studied. It is assumed that the system is nonlinear with respect to the state vector and is affine with respect to the control vector. The control functions are chosen from a closed ball of the space $L_p$ $(p>1)$ with radius $r$. It is proved that the set of trajectories of the control system generated by all admissible control functions is Lipschitz continuous with respect to $r$ and is continuous with respect to $p$ as a set valued map. It is shown that the system's trajectory is robust with respect to the full consumption of the remaining control resource and every trajectory can be approximated by a trajectory generated by the control function with full control resource consumption.
Keywords: integral equation, control system, integral constraint, set of trajectories, robustness.
@article{TIMM_2021_27_3_a21,
     author = {N. Huseyin and A. Huseyin and Kh. G. Guseinov},
     title = {On the {Robustness} {Property} of a {Control} {System} {Described} by an {Urysohn} {Type} {Integral} {Equation}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {263--270},
     year = {2021},
     volume = {27},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a21/}
}
TY  - JOUR
AU  - N. Huseyin
AU  - A. Huseyin
AU  - Kh. G. Guseinov
TI  - On the Robustness Property of a Control System Described by an Urysohn Type Integral Equation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 263
EP  - 270
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a21/
LA  - en
ID  - TIMM_2021_27_3_a21
ER  - 
%0 Journal Article
%A N. Huseyin
%A A. Huseyin
%A Kh. G. Guseinov
%T On the Robustness Property of a Control System Described by an Urysohn Type Integral Equation
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 263-270
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a21/
%G en
%F TIMM_2021_27_3_a21
N. Huseyin; A. Huseyin; Kh. G. Guseinov. On the Robustness Property of a Control System Described by an Urysohn Type Integral Equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 263-270. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a21/

[1] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhauser, Boston, 1990, 461 pp. | Zbl

[2] Bakke V.L., “A maximum principle for an optimal control problem with integral constraints”, J. Optim. Theory Appl., 13 (1974), 32–55 | DOI | Zbl

[3] Beletskii V.V., Ocherki o dvizhenii kosmicheskikh tel[Notes on the motion of celestial bodies], Nauka, M., 1972, 360 pp.

[4] Brauer F., “On a nonlinear integral equation for population growth problems”, SIAM J. Math. Anal., 69 (1975), 312–317 | DOI

[5] Corduneanu C., Principles of differential and integral equations, Chelsea Publishing Co., Bronx, N.Y., 1977, 205 pp.

[6] Guseinov Kh.G, Nazlipinar A.S., “On the continuity property of $L_p$ balls and an application”, J. Math. Anal. Appl., 335 (2007), 1347–1359 | DOI | Zbl

[7] Gusev M.I., Zykov I.V., “On extremal properties of the boundary points of reachable sets for control systems with integral constraints”, Trudy Inst. Mat. Mekh. UrO RAN, 23:1 (2017), 103–115 (in Russian) | DOI

[8] Huseyin N., Huseyin A., Guseinov Kh.G., “Approximation of the set of trajectories of a control system described by the Urysohn integral equation”, Trudy Inst. Mat. Mekh. UrO RAN, 21:2 (2015), 59–72 (in Russian)

[9] Huseyin A., Huseyin N., Guseinov Kh.G., “Approximation of the sections of the set of trajectories of the control system described by a nonlinear Volterra integral equation”, Math. Model. Anal., 20:4 (2015), 502–515 | DOI | Zbl

[10] Huseyin N., Guseinov Kh.G., Ushakov V.N., “Approximate construction of the set of trajectories of the control system described by a Volterra integral equation”, Math. Nachr., 288:16 (2015), 1891–1899 | DOI | Zbl

[11] Kostousova E.K., “State estimates of bilinear discrete-time systems with integral constraints through polyhedral techniques”, IFAC Papers Online, 51(32) (2018), 245–250 | DOI

[12] Krasnoselskii M.A., Krein S.G., “On the principle of averaging in nonlinear mechanics”, Uspekhi Mat. Nauk, 10 (1955), 147–153 (in Russian)

[13] Krasnov M.L., Integral'nye uravneniya [Integral equations], Nauka, M., 1975, 303 pp.

[14] Krasovskii N.N., Teoriya upravleniya dvizheniem. Lineinye sistemy [Theory of motion control. Linear systems], Nauka Publ, Moscow, 1968, 476 pp.

[15] Subbotin A.I., Ushakov V.N., “Alternative for an encounter-evasion differential game with integral constraints on the players controls”, J. Appl. Math. Mech., 39:3 (1975), 367–375 | DOI | Zbl

[16] Subbotina N.N., Subbotin A.I., “Alternative for the encounter-evasion differential game with constraints on the momenta of the players controls”, J. Appl. Math. Mech., 39:3 (1975), 376–385 | DOI | Zbl