@article{TIMM_2021_27_3_a21,
author = {N. Huseyin and A. Huseyin and Kh. G. Guseinov},
title = {On the {Robustness} {Property} of a {Control} {System} {Described} by an {Urysohn} {Type} {Integral} {Equation}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {263--270},
year = {2021},
volume = {27},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a21/}
}
TY - JOUR AU - N. Huseyin AU - A. Huseyin AU - Kh. G. Guseinov TI - On the Robustness Property of a Control System Described by an Urysohn Type Integral Equation JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 263 EP - 270 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a21/ LA - en ID - TIMM_2021_27_3_a21 ER -
%0 Journal Article %A N. Huseyin %A A. Huseyin %A Kh. G. Guseinov %T On the Robustness Property of a Control System Described by an Urysohn Type Integral Equation %J Trudy Instituta matematiki i mehaniki %D 2021 %P 263-270 %V 27 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a21/ %G en %F TIMM_2021_27_3_a21
N. Huseyin; A. Huseyin; Kh. G. Guseinov. On the Robustness Property of a Control System Described by an Urysohn Type Integral Equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 263-270. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a21/
[1] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhauser, Boston, 1990, 461 pp. | Zbl
[2] Bakke V.L., “A maximum principle for an optimal control problem with integral constraints”, J. Optim. Theory Appl., 13 (1974), 32–55 | DOI | Zbl
[3] Beletskii V.V., Ocherki o dvizhenii kosmicheskikh tel[Notes on the motion of celestial bodies], Nauka, M., 1972, 360 pp.
[4] Brauer F., “On a nonlinear integral equation for population growth problems”, SIAM J. Math. Anal., 69 (1975), 312–317 | DOI
[5] Corduneanu C., Principles of differential and integral equations, Chelsea Publishing Co., Bronx, N.Y., 1977, 205 pp.
[6] Guseinov Kh.G, Nazlipinar A.S., “On the continuity property of $L_p$ balls and an application”, J. Math. Anal. Appl., 335 (2007), 1347–1359 | DOI | Zbl
[7] Gusev M.I., Zykov I.V., “On extremal properties of the boundary points of reachable sets for control systems with integral constraints”, Trudy Inst. Mat. Mekh. UrO RAN, 23:1 (2017), 103–115 (in Russian) | DOI
[8] Huseyin N., Huseyin A., Guseinov Kh.G., “Approximation of the set of trajectories of a control system described by the Urysohn integral equation”, Trudy Inst. Mat. Mekh. UrO RAN, 21:2 (2015), 59–72 (in Russian)
[9] Huseyin A., Huseyin N., Guseinov Kh.G., “Approximation of the sections of the set of trajectories of the control system described by a nonlinear Volterra integral equation”, Math. Model. Anal., 20:4 (2015), 502–515 | DOI | Zbl
[10] Huseyin N., Guseinov Kh.G., Ushakov V.N., “Approximate construction of the set of trajectories of the control system described by a Volterra integral equation”, Math. Nachr., 288:16 (2015), 1891–1899 | DOI | Zbl
[11] Kostousova E.K., “State estimates of bilinear discrete-time systems with integral constraints through polyhedral techniques”, IFAC Papers Online, 51(32) (2018), 245–250 | DOI
[12] Krasnoselskii M.A., Krein S.G., “On the principle of averaging in nonlinear mechanics”, Uspekhi Mat. Nauk, 10 (1955), 147–153 (in Russian)
[13] Krasnov M.L., Integral'nye uravneniya [Integral equations], Nauka, M., 1975, 303 pp.
[14] Krasovskii N.N., Teoriya upravleniya dvizheniem. Lineinye sistemy [Theory of motion control. Linear systems], Nauka Publ, Moscow, 1968, 476 pp.
[15] Subbotin A.I., Ushakov V.N., “Alternative for an encounter-evasion differential game with integral constraints on the players controls”, J. Appl. Math. Mech., 39:3 (1975), 367–375 | DOI | Zbl
[16] Subbotina N.N., Subbotin A.I., “Alternative for the encounter-evasion differential game with constraints on the momenta of the players controls”, J. Appl. Math. Mech., 39:3 (1975), 376–385 | DOI | Zbl