Stability Region for Discrete Time Systems and Its Boundary
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 246-255
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we investigate the Schur stability region of the $n$th order polynomials in the coefficient space. Parametric description of the boundary set is obtained. We show that all the boundary can be obtained as a multilinear image of three $(n-1)$-dimensional boxes. For even and odd $n$ these boundary boxes are different. Analogous properties for the classical multilinear reflection map are unknown. It is shown that for $n \geq 4$, both two parts of the boundary which are pieces of the corresponding hyperplanes are nonconvex. Polytopes in the nonconvex stability region are constructed. A number of examples are provided.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Schur stability, stability region, polytope, boundary set.
                    
                    
                    
                  
                
                
                @article{TIMM_2021_27_3_a19,
     author = {V. Dzhafarov and T. B\"uy\"ukk\"oro\u{g}lu and H. Akyar},
     title = {Stability {Region} for {Discrete} {Time} {Systems} and {Its} {Boundary}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {246--255},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a19/}
}
                      
                      
                    TY - JOUR AU - V. Dzhafarov AU - T. Büyükköroğlu AU - H. Akyar TI - Stability Region for Discrete Time Systems and Its Boundary JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 246 EP - 255 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a19/ LA - en ID - TIMM_2021_27_3_a19 ER -
V. Dzhafarov; T. Büyükköroğlu; H. Akyar. Stability Region for Discrete Time Systems and Its Boundary. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 246-255. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a19/
