Stability Region for Discrete Time Systems and Its Boundary
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 246-255 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we investigate the Schur stability region of the $n$th order polynomials in the coefficient space. Parametric description of the boundary set is obtained. We show that all the boundary can be obtained as a multilinear image of three $(n-1)$-dimensional boxes. For even and odd $n$ these boundary boxes are different. Analogous properties for the classical multilinear reflection map are unknown. It is shown that for $n \geq 4$, both two parts of the boundary which are pieces of the corresponding hyperplanes are nonconvex. Polytopes in the nonconvex stability region are constructed. A number of examples are provided.
Keywords: Schur stability, stability region, polytope, boundary set.
@article{TIMM_2021_27_3_a19,
     author = {V. Dzhafarov and T. B\"uy\"ukk\"oro\u{g}lu and H. Akyar},
     title = {Stability {Region} for {Discrete} {Time} {Systems} and {Its} {Boundary}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {246--255},
     year = {2021},
     volume = {27},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a19/}
}
TY  - JOUR
AU  - V. Dzhafarov
AU  - T. Büyükköroğlu
AU  - H. Akyar
TI  - Stability Region for Discrete Time Systems and Its Boundary
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 246
EP  - 255
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a19/
LA  - en
ID  - TIMM_2021_27_3_a19
ER  - 
%0 Journal Article
%A V. Dzhafarov
%A T. Büyükköroğlu
%A H. Akyar
%T Stability Region for Discrete Time Systems and Its Boundary
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 246-255
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a19/
%G en
%F TIMM_2021_27_3_a19
V. Dzhafarov; T. Büyükköroğlu; H. Akyar. Stability Region for Discrete Time Systems and Its Boundary. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 246-255. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a19/

[1] Fam A.T. and Meditch J.S., “A canonical parameter space for linear systems design”, IEEE Transactions on Automatic Control, 23:3 (1978), 454–458 | DOI | Zbl

[2] Fam A.T., “The volume of the coefficient space stability domain of monic polynomials”, IEEE International Symposium on Circuits and Systems, v. 2, 1989, 1780–1783 | DOI

[3] Nurges J.U., “New stability conditions via reflection coefficients of polynomials”, IEEE Transactions on Automatic Control, 50:9 (2005), 1354–1360 | DOI | Zbl

[4] Büyükköroğlu T., Çelebi G. and Dzhafarov V., “Stabilisation of discrete-time systems via Schur stability region”, Internat. J. Control, 91:7 (2018), 1620–1629 | DOI | Zbl

[5] Kharitonov V.L., “Asymptotic stability of an equilibrium position of a family of systems of linear differential equations”, Diff. Uravn., 14 (1978), 2086–2088 | Zbl

[6] Calafiore G. and El Ghaoui L., “Ellipsoidal bounds for uncertain linear equations and dynamical systems”, Automatica, 40:5 (2004), 773–787 | DOI | Zbl

[7] Henrion D., Peaucelle D., Arzelier D. and Sebek M., “Ellipsoidal approximation of the stability domain of a polynomial”, IEEE Transactions on Automatic Control, 48:12 (2003), 2255–2259 | DOI | Zbl

[8] Aguirre-Hernandez B., Garcia-Sosa R., Leyva H., Solis-Daun J. and Carrillo F.A., “Conditions for the Schur stability of segments of polynomials of the same degree”, Boletin de la Sociedad Matematica Mexicana, 21 (2009), 309–321 | DOI

[9] Hinrichsen D. and Pritchard A.J., Mathematical systems theory I., Modelling, State Space Analysis, Stability and Robustness, Texts in Applied Mathematics, 48, Springer-Verlag, Berlin, 2005, 804 pp. | DOI | Zbl

[10] Wu Q.-H. and Mansour M., “On the stability radius of a Schur polynomial”, Systems and control letters, 21 (1993), 99–205

[11] Barmish B.R., New tools for robustness of linear systems, Macmillan Publ. Company, N Y, 1994, 394 pp. | Zbl

[12] Dzhafarov V., Esen Ö, Büyükköroğlu T., “On polytopes in Hurwitz region”, Systems Control Letters, 141 (2020), 1–5 | DOI