@article{TIMM_2021_27_3_a19,
author = {V. Dzhafarov and T. B\"uy\"ukk\"oro\u{g}lu and H. Akyar},
title = {Stability {Region} for {Discrete} {Time} {Systems} and {Its} {Boundary}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {246--255},
year = {2021},
volume = {27},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a19/}
}
TY - JOUR AU - V. Dzhafarov AU - T. Büyükköroğlu AU - H. Akyar TI - Stability Region for Discrete Time Systems and Its Boundary JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 246 EP - 255 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a19/ LA - en ID - TIMM_2021_27_3_a19 ER -
V. Dzhafarov; T. Büyükköroğlu; H. Akyar. Stability Region for Discrete Time Systems and Its Boundary. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 246-255. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a19/
[1] Fam A.T. and Meditch J.S., “A canonical parameter space for linear systems design”, IEEE Transactions on Automatic Control, 23:3 (1978), 454–458 | DOI | Zbl
[2] Fam A.T., “The volume of the coefficient space stability domain of monic polynomials”, IEEE International Symposium on Circuits and Systems, v. 2, 1989, 1780–1783 | DOI
[3] Nurges J.U., “New stability conditions via reflection coefficients of polynomials”, IEEE Transactions on Automatic Control, 50:9 (2005), 1354–1360 | DOI | Zbl
[4] Büyükköroğlu T., Çelebi G. and Dzhafarov V., “Stabilisation of discrete-time systems via Schur stability region”, Internat. J. Control, 91:7 (2018), 1620–1629 | DOI | Zbl
[5] Kharitonov V.L., “Asymptotic stability of an equilibrium position of a family of systems of linear differential equations”, Diff. Uravn., 14 (1978), 2086–2088 | Zbl
[6] Calafiore G. and El Ghaoui L., “Ellipsoidal bounds for uncertain linear equations and dynamical systems”, Automatica, 40:5 (2004), 773–787 | DOI | Zbl
[7] Henrion D., Peaucelle D., Arzelier D. and Sebek M., “Ellipsoidal approximation of the stability domain of a polynomial”, IEEE Transactions on Automatic Control, 48:12 (2003), 2255–2259 | DOI | Zbl
[8] Aguirre-Hernandez B., Garcia-Sosa R., Leyva H., Solis-Daun J. and Carrillo F.A., “Conditions for the Schur stability of segments of polynomials of the same degree”, Boletin de la Sociedad Matematica Mexicana, 21 (2009), 309–321 | DOI
[9] Hinrichsen D. and Pritchard A.J., Mathematical systems theory I., Modelling, State Space Analysis, Stability and Robustness, Texts in Applied Mathematics, 48, Springer-Verlag, Berlin, 2005, 804 pp. | DOI | Zbl
[10] Wu Q.-H. and Mansour M., “On the stability radius of a Schur polynomial”, Systems and control letters, 21 (1993), 99–205
[11] Barmish B.R., New tools for robustness of linear systems, Macmillan Publ. Company, N Y, 1994, 394 pp. | Zbl
[12] Dzhafarov V., Esen Ö, Büyükköroğlu T., “On polytopes in Hurwitz region”, Systems Control Letters, 141 (2020), 1–5 | DOI