@article{TIMM_2021_27_3_a18,
author = {E. N. Barron},
title = {A {Survey} of {Hopf-Lax} {Formulas} and {Quasiconvexity} in {PDEs}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {237--245},
year = {2021},
volume = {27},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a18/}
}
E. N. Barron. A Survey of Hopf-Lax Formulas and Quasiconvexity in PDEs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 237-245. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a18/
[1] Alvarez O., Barron E.N., and Ishii H., “Hopf-Lax formulas for semicontinuous data”, Indiana Univ. Math. J., 48 (1999), 993–1035 | DOI | Zbl
[2] Bardi M. and Capuzzo-Dolcetta I., Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, with appendices by Maurizio Falcone and Pierpaolo Soravia, Systems Control: Foundations Applications, Birkhauser, Boston, 1997, 574 pp.
[3] Bardi M. and Evans L.C., “On Hopf's formula for solutions of Hamilton-Jacobi equations”, Nonlinear Anal., 8 (1984), 1373–1381 | DOI | Zbl
[4] Barron E., “Lax formula for obstacle problems”, Minimax Theory Appl., 4:2 (2019), 341–354 | Zbl
[5] Barron E., “Representation of viscosity solutions of Hamilton-Jacobi equations”, Minimax Theory Appl., 01 (2016), 51–63
[6] Barron E.N., “Reach-avoid differential games with targets and obstacles depending on controls”, Dynamic Games and Applications, 4 (2018), 696–712 | DOI | Zbl
[7] Barron E.N., Goebel R., and Jensen R., “Quasiconvex functions and viscosity solutions of partial differential equations”, Trans. Amer. Math. Soc., 365:8 (2013), S 0002-9947(2013)05760-1, 4229–4255 | DOI | Zbl
[8] Barron E.N. and Jensen R., “A uniqueness result for the quasiconvex operator and first order PDEs for convex envelopes”, Ann. I. H. Poincare - AN, 31:2 (2014), 203–215 | DOI | Zbl
[9] Barron E.N. and Jensen R., “Hopf formulas for nonlinear obstacle problems”, Minimax Theory Appl., 5 (2020), 1–18 | DOI
[10] Barron E.N., Jensen R. and W. Liu, “Hopf-Lax formula for $u_t+H(u,Du)=0$”, J. Diff. Eqs., 126 (1996), 48–61 | DOI | Zbl
[11] Bensoussan A. and Friedman A., “Nonlinear variational inequalities and differential games with stopping times”, J. Functional Anal., 16 (1974), 305–352 | DOI | Zbl
[12] Fisac J., Chen M., Tomlin C., and Sastry S., “Reach-Avoid problems with time-varying dynamics, targets, and constraints”, Proc. of the 18th Internat. Conf. on Hybrid Systems: Computation and Control, 2015, 11–20 | DOI | Zbl
[13] Subbotin A.I., Generalized solution of first-order PDEs, Birkhauser, Boston, 1995, 314 pp. | DOI
[14] Van T.D., “Hopf–Lax–Oleinik-type formulas for viscosity solutions to some Hamilton–Jacobi Equations”, Vietnam J. Math., 32 (2004), 241–275 | Zbl