The program iteration method and the relaxation problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 211-226 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The issues related to an approach–evasion differential game are considered: alternative solvability, construction of relaxations of an approach game problem, and construction of a solution based on the program iteration method. The case is considered when the set defining the phase constraints in a differential game with a closed target set may be nonclosed in the position space but has closed sections. For this situation, an alternative is established that is ideologically similar to the Krasovskii–Subbotin alternative under a certain correction of the classes of strategies. The question of constructing relaxations of the problem of approaching the target set in the presence of phase constraints is considered; it is assumed that the weakening of the conditions in terms of bringing the system to the target set and in terms of observing the phase constraints may be different, which is achieved by introducing a special priority coefficient. When a position of the game is fixed, the smallest size of a neighborhood of the target set is determined for which, with a proportional (in the sense of the mentioned coefficient) weakening of the phase constraints, the player interested in the approach can still guarantee it in an appropriate class of strategies (here, nonanticipation strategies or quasi-strategies). For the resulting main function of the position, a sequence of functions (positions) converging to this function is introduced based on a variant of the program iteration method operating in the space of sets with elements in the form of game positions. After that, a special operator on the function space (a program operator) is constructed, which implements this sequence by means of a “direct ” iterative procedure and for which the main function itself is a fixed point. Thus, a new version of the program iteration method is implemented. A type of the quality functional with the following property is proposed: when a position is fixed, the value of the main function is the value of a game for the minimax–maximin of this functional.
Keywords: alternative, differential game, program iteration method, relaxation.
@article{TIMM_2021_27_3_a16,
     author = {A. G. Chentsov},
     title = {The program iteration method and the relaxation problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {211--226},
     year = {2021},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a16/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - The program iteration method and the relaxation problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 211
EP  - 226
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a16/
LA  - ru
ID  - TIMM_2021_27_3_a16
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T The program iteration method and the relaxation problem
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 211-226
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a16/
%G ru
%F TIMM_2021_27_3_a16
A. G. Chentsov. The program iteration method and the relaxation problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 211-226. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a16/

[1] Krasovskii N. N., Subbotin A. I., “Alternativa dlya igrovoi zadachi sblizheniya”, Prikl. matematika i mekhanika, 34:6 (1970), 1005–1022 | Zbl

[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp.

[3] Aizeks R., Differentsialnye igry, Mir, M., 1967, 480 pp.

[4] Chentsov A. G., “Metod programmnykh iteratsii v igrovoi zadache navedeniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:2 (2016), 304–321

[5] Chentsov A. G., “Iteratsii stabilnosti i zadacha ukloneniya s ogranicheniem na chislo pereklyuchenii formiruemogo upravleniya”, Izv. IMI Udmurt. gos. un-ta, 49 (2017), 17–54 | DOI | Zbl

[6] Chentsov A. G., “Nekotorye voprosy teorii differentsialnykh igr s fazovymi ogranicheniyami”, Izv. IMI Udmurt. gos. un-ta, 56 (2020), 138–184 | DOI | Zbl

[7] Chentsov A. G., “Relaksatsii igrovoi zadachi sblizheniya, svyazannye s alternativoi v differentsialnoi igre sblizheniya-ukloneniya”, Vestn. rossiiskikh un-tov. Matematika, 25:130 (2020), 196–244 | DOI

[8] Chentsov A. G., Khachai D. M., “Operator programmnogo pogloscheniya i relaksatsiya differentsialnoi igry sblizheniya-ukloneniya”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 30:1 (2020), 64–91 | DOI

[9] Chentsov A. G., Khachay D. M., “Program iterations method and relaxation of a pursuit-evasion differential game”, Advanced control techniques in complex engineering systems: Theory and applications, Studies in Systems, Decision and Control, 203, 2019, 129–161 | DOI | Zbl

[10] Chentsov A. G., Khachay D. M., “Relaxation of a dinamic game of guidance and program constructions of control”, Minimax theory and its applications, 5:2 (2020), 275–304 | Zbl

[11] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Fizmatlit, M., 1970, 420 pp.

[12] Krasovskii N. N., “Differentsialnaya igra sblizheniya-ukloneniya. I”, Izv. AN SSSR: Tekhnicheskaya kibernetika, 1973, no. 2, 3–18 | Zbl

[13] Krasovskii N. N., “Differentsialnaya igra sblizheniya-ukloneniya. II”, Izv. AN SSSR: Tekhnicheskaya kibernetika, 1973, no. 3, 22–42 | Zbl

[14] Chentsov A. G., “O strukture odnoi igrovoi zadachi sblizheniya”, Dokl. AN SSSR, 224:6 (1975), 1272–1275 | Zbl

[15] Chentsov A. G., “K igrovoi zadache navedeniya”, Dokl. AN SSSR, 226:1 (1976), 73–76 | Zbl

[16] Chistyakov S. V., “K resheniyu igrovykh zadach presledovaniya”, Prikl. matematika i mekhanika, 41:5 (1977), 825–832

[17] Ukhobotov V. I., “Postroenie stabilnogo mosta dlya odnogo klassa lineinykh igr”, Prikl. matematika i mekhanika, 41:2 (1977), 358–364

[18] Subbotin A. I., Minimaksnye neravenstva i uravneniya Gamiltona–Yakobi, Nauka, M., 1991, 216 pp.

[19] Subbotin A. I., Generalized solutions of first-order PDEs. The dynamical optimization perspective, Systems Control: Foundations Appl., Birkhauser, Boston, 1995, 312 pp. | DOI

[20] Subbotin A. I., “Nepreryvnye i razryvnye resheniya kraevykh zadach dlya uravnenii s chastnymi proizvodnymi pervogo poryadka”, Dokl. RAN, 323:1 (1992), 30–34 | Zbl

[21] Subbotin A. I., Chentsov A. G., “Iteratsionnaya protsedura postroeniya minimaksnykh i vyazkostnykh reshenii uravnenii Gamiltona–Yakobi”, Dokl. RAN, 348:6 (1996), 736–739 | Zbl

[22] Subbotin A. I., Chentsov A. G., “Iteratsionnaya protsedura postroeniya minimaksnykh i vyazkostnykh reshenii uravnenii Gamiltona–Yakobi i ee obobscheniya”, Tr. MIAN, 224 (1999), 311–334 | Zbl

[23] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970, 416 pp.

[24] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964, 430 pp.

[25] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp.

[26] Danford N., Shvarts Dzh. T., Lineinye operatory: Obschaya teoriya, IL, M., 1962, 895 pp.

[27] Kryazhimskii A. V., “K teorii pozitsionnykh differentsialnykh igr sblizheniya-ukloneniya”, Dokl. AN SSSR, 239:4 (1978), 779–782 | Zbl

[28] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp.

[29] Chentsov A. G., Metod programmnykh iteratsii dlya differentsialnoi igry sblizheniya-ukloneniya, Dep. v VINITI 04.06.79, No1933-79, In-t matematiki i mekhaniki UNTs AN SSSR, 103 pp.

[30] Chentsov A. G., Elementy konechno-additivnoi teorii mery. I., UGTU-UPI, Ekaterinburg, 2008, 388 pp.