On the construction of a discontinuous piecewise affine synthesis in a target control problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 194-210 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A new method is proposed for the approximate solution of problems of solvability and control synthesis for a nonlinear system of ordinary differential equations. The method is based on the piecewise linearization (hybridization) of equations and on the use of the dynamic programming approach and the comparison principle. The main idea is to construct piecewise affine value functions and a feedback control of a special form. Two cases are considered: when these functions are continuous and when they may have discontinuities on certain sets in the state space. In both cases, we obtain internal estimates for the solvability sets of the original nonlinear system and a feedback control that takes the system's state vector to the target set on a given finite time interval.
Keywords: nonlinear dynamics, control synthesis, dynamic programming, comparison principle, linearization, switched system, piecewise affine value function.
@article{TIMM_2021_27_3_a15,
     author = {P. A. Tochilin and I. A. Chistyakov},
     title = {On the construction of a discontinuous piecewise affine synthesis in a target control problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {194--210},
     year = {2021},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a15/}
}
TY  - JOUR
AU  - P. A. Tochilin
AU  - I. A. Chistyakov
TI  - On the construction of a discontinuous piecewise affine synthesis in a target control problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 194
EP  - 210
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a15/
LA  - ru
ID  - TIMM_2021_27_3_a15
ER  - 
%0 Journal Article
%A P. A. Tochilin
%A I. A. Chistyakov
%T On the construction of a discontinuous piecewise affine synthesis in a target control problem
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 194-210
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a15/
%G ru
%F TIMM_2021_27_3_a15
P. A. Tochilin; I. A. Chistyakov. On the construction of a discontinuous piecewise affine synthesis in a target control problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 194-210. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a15/

[1] Kurzhanskii A.B., “Printsip sravneniya dlya uravneniya tipa Gamiltona-Yakobi v teorii upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12:1 (2006), 173–183 | Zbl

[2] Kurzhanski A.B., Varaiya P., Dynamics and control of trajectory tubes, SCFA, 85, Birkhauser, Basel, 2014, 445 pp. | DOI

[3] Habets L.C.G.J.M., Collins P.J., van Schuppen J.H., “Reachability and control synthesis for piecewise-affine hybrid systems on simplices”, IEEE Trans. Automatic Control, 51:6 (2006), 938–948 | DOI | Zbl

[4] Girard A., Martin S., “Synthesis of constrained nonlinear systems using hybridization and robust controllers on simplices”, IEEE Trans. Automatic Control, 57:4 (2012), 1046–1051 | DOI | Zbl

[5] Kurzhanski A.B., Varaiya P., “The Hamilton-Jacobi equations for nonlinear target control and their approximation”, Analysis and Design of Nonlinear Control Systems, Springer, 2007, 77–90 | DOI

[6] Subbotin A.I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevskii institut kompyuternykh issledovanii, Moskva; Izhevsk, 2003, 336 pp.

[7] Fleming W.H., Soner H.M., Controlled Markov processes and viscosity solutions, Springer, N Y, 2006, 429 pp. | DOI | Zbl

[8] Bardi M., Capuzzo-Dolcetta I., Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems Control: Foundations Applications, Birkhauser, Boston, 2008, 570 pp. | Zbl

[9] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp.

[10] Tochilin P.A., “Piecewise affine feedback control for approximate solution of the target control problem”, IFAC-PapersOnLine, 53:2 (2020), 6127–6132 | DOI

[11] Chistyakov I.A., Tochilin P.A., “Primenenie kusochno-kvadratichnykh funktsii tseny dlya priblizhennogo resheniya nelineinoi zadachi tselevogo upravleniya”, Differents. uravneniya, 56:11 (2020), 1545–1554

[12] Asarin E., Dang T., Girard A., “Hybridization methods for the analysis of nonlinear systems”, Acta Informatica, 43:7 (2007), 451–476 | DOI | Zbl

[13] Li D., Bak S., Bogomolov S., “Reachability analysis of nonlinear systems using hybridization and dynamics scaling”, Formal Modeling and Analysis of Timed Systems, LNCIS, 12288, eds. N. Bertrand, N. Jansen, Springer, N Y, 2020 | DOI | Zbl

[14] Tochilin P.A., “O postroenii nevypuklykh approksimatsii mnozhestv dostizhimosti kusochno-lineinoi sistemy”, Differents. uravneniya, 51:11 (2015), 1503–1515 | Zbl

[15] Tochilin P.A., “O postroenii kusochno-affinnoi funktsii tseny v zadache optimalnogo upravleniya na beskonechnom otrezke vremeni”, Tr. In-ta matematiki i mekhaniki UrO RAN, 26:1 (2020), 223–238 | DOI