Adaptive optimal stabilization of a discrete-time minimum-phase plant under output and input uncertainties
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 180-193 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper addresses a problem of optimal robust, within the framework of the $\ell_1$-theory of robust control, stabilization of a discrete-time minimum-phase plant under large a priori uncertainty. A minimum-phase plant is a control system with stable zeros of the transfer function of the nominal model. The coefficients of the transfer function are assumed to be unknown and belonging to a known bounded polyhedron in the coefficient space. An upper bound of the external disturbance and the amplification factors of the uncertainties (disturbances) in the output and control are also assumed to be unknown. The performance index is the worst asymptotic absolute value of the output in the class of disturbances and uncertainties. The solution of the problem of adaptive optimal stabilization with a prescribed accuracy is based on the method of recurrent objective inequalities, the choice of the performance index of the control problem as the identification criterion, and the use of polyhedral estimates of all unknown parameters. The application of the method of recurrent objective inequalities provides the online verification of current estimates of the unknown parameters and a priori assumptions.
Keywords: adaptive control, optimal control, robust control, bounded disturbance, uncertainty.
@article{TIMM_2021_27_3_a14,
     author = {V. F. Sokolov},
     title = {Adaptive optimal stabilization of a discrete-time minimum-phase plant under output and input uncertainties},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {180--193},
     year = {2021},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a14/}
}
TY  - JOUR
AU  - V. F. Sokolov
TI  - Adaptive optimal stabilization of a discrete-time minimum-phase plant under output and input uncertainties
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 180
EP  - 193
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a14/
LA  - ru
ID  - TIMM_2021_27_3_a14
ER  - 
%0 Journal Article
%A V. F. Sokolov
%T Adaptive optimal stabilization of a discrete-time minimum-phase plant under output and input uncertainties
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 180-193
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a14/
%G ru
%F TIMM_2021_27_3_a14
V. F. Sokolov. Adaptive optimal stabilization of a discrete-time minimum-phase plant under output and input uncertainties. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 180-193. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a14/

[1] Kosut R., Goodwin G., Polis M., “Special issue on system identification for robust control design: Introduction”, IEEE Trans. Automat. Control, 37:7 (1992), 899 | DOI

[2] Ljung L. and Vicino A., “Guest editorial; Special issue on system identification”, IEEE Trans. Automat. Control, 50:10 (2005), 1473 | DOI | Zbl

[3] Veres S.M., “Bounding methods for state and parameter estimation”, Int. J. Adaptive Control and Signal Processing, 25:3 (2011), 189–190 | DOI

[4] Casini M., Garulli A., Vicino A., “A linear programming approach to online set membership parameter estimation for linear regression models”, Int. J. Adaptive Control and Signal Processing, 31:3 (2017), 360–378 | DOI | Zbl

[5] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp.

[6] The modeling of uncertainty in control systems, Lecture Notes in Control and Information Sciences, 192, eds. Smith R.S., Dahleh M., Springer-Verlag, London, U.K., 1994, 391 pp. | Zbl

[7] Ljung L., Goodwin G., Agüero J.C., “Model error modeling and stochastic embedding”, IFAC-PapersOnLine, 48:28 (2015), 75–79 | DOI

[8] Delgado R.A., Goodwin G.C., Carvajal R., Agüero J.C., “A novel approach to model error modelling using the expectation-maximization algorithm”, IEEE 51st Conference on Decision and Control (CDC), 2012, 7327–7332 | DOI

[9] Lamnabhi-Lagarrigue F., Annaswamy A., Engell C., et al., “Systems Control for the future of humanity, research agenda: Current and future roles, impact and grand challenges”, Annual Reviews in Control, 43 (2017), 1–64 | DOI

[10] Khammash M., Pearson J.B., “Performance robustness of discrete-time systems with structured uncertainty”, IEEE Trans. Automat. Control, AC-36:4 (1991), 398–412 | DOI | Zbl

[11] Khammash M., Pearson J.B., “Analysis and design for robust performance with structured uncertainty”, Systems and Control Letters, 20 (1993), 179–187 | DOI | Zbl

[12] Fomin V.N., Fradkov A.L., Yakubovich V.A., Adaptivnoe upravlenie dinamicheskimi ob'ektami, Nauka, M., 1981, 448 pp.

[13] Khammash M.H., “Robust steady-state tracking”, IEEE Trans. Automat. Control, 40:11 (1995), 1872–1880 | DOI | Zbl

[14] Khammash M.H., “Robust performance: Unknown disturbances and known fixed inputs”, IEEE Trans. Automat. Control, 42:12 (1997), 1730–1734 | DOI | Zbl

[15] Sokolov V.F., “Asimptoticheskoe robastnoe kachestvo diskretnoi sistemy slezheniya v $\ell_1$-metrike”, Avtomatika i telemekhanika, 1999, no. 1, 101–112 | Zbl

[16] Sokolov V.F., “Adaptive $\ell_1$ robust control for SISO system”, Systems Control Letters, 42:5 (2001), 379–393 | DOI | Zbl

[17] Sokolov V.F., “Closed-loop identification for the best asymptotic performance of adaptive robust control”, Automatica, 32:8 (1996), 1163–1176 | DOI | Zbl

[18] Picasso B., Colaneri P., “Non-minimal factorization approach to the $\ell_\infty$-gain of discrete-time linear systems”, Automatica, 49:9 (2013), 2867–2873 | DOI | Zbl

[19] Sánchez-Peña R.S., Sznaier M., Robust systems theory and applications, John Wiley Sons, Inc, 1998, 486 pp.