@article{TIMM_2021_27_3_a14,
author = {V. F. Sokolov},
title = {Adaptive optimal stabilization of a discrete-time minimum-phase plant under output and input uncertainties},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {180--193},
year = {2021},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a14/}
}
TY - JOUR AU - V. F. Sokolov TI - Adaptive optimal stabilization of a discrete-time minimum-phase plant under output and input uncertainties JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 180 EP - 193 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a14/ LA - ru ID - TIMM_2021_27_3_a14 ER -
V. F. Sokolov. Adaptive optimal stabilization of a discrete-time minimum-phase plant under output and input uncertainties. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 180-193. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a14/
[1] Kosut R., Goodwin G., Polis M., “Special issue on system identification for robust control design: Introduction”, IEEE Trans. Automat. Control, 37:7 (1992), 899 | DOI
[2] Ljung L. and Vicino A., “Guest editorial; Special issue on system identification”, IEEE Trans. Automat. Control, 50:10 (2005), 1473 | DOI | Zbl
[3] Veres S.M., “Bounding methods for state and parameter estimation”, Int. J. Adaptive Control and Signal Processing, 25:3 (2011), 189–190 | DOI
[4] Casini M., Garulli A., Vicino A., “A linear programming approach to online set membership parameter estimation for linear regression models”, Int. J. Adaptive Control and Signal Processing, 31:3 (2017), 360–378 | DOI | Zbl
[5] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp.
[6] The modeling of uncertainty in control systems, Lecture Notes in Control and Information Sciences, 192, eds. Smith R.S., Dahleh M., Springer-Verlag, London, U.K., 1994, 391 pp. | Zbl
[7] Ljung L., Goodwin G., Agüero J.C., “Model error modeling and stochastic embedding”, IFAC-PapersOnLine, 48:28 (2015), 75–79 | DOI
[8] Delgado R.A., Goodwin G.C., Carvajal R., Agüero J.C., “A novel approach to model error modelling using the expectation-maximization algorithm”, IEEE 51st Conference on Decision and Control (CDC), 2012, 7327–7332 | DOI
[9] Lamnabhi-Lagarrigue F., Annaswamy A., Engell C., et al., “Systems Control for the future of humanity, research agenda: Current and future roles, impact and grand challenges”, Annual Reviews in Control, 43 (2017), 1–64 | DOI
[10] Khammash M., Pearson J.B., “Performance robustness of discrete-time systems with structured uncertainty”, IEEE Trans. Automat. Control, AC-36:4 (1991), 398–412 | DOI | Zbl
[11] Khammash M., Pearson J.B., “Analysis and design for robust performance with structured uncertainty”, Systems and Control Letters, 20 (1993), 179–187 | DOI | Zbl
[12] Fomin V.N., Fradkov A.L., Yakubovich V.A., Adaptivnoe upravlenie dinamicheskimi ob'ektami, Nauka, M., 1981, 448 pp.
[13] Khammash M.H., “Robust steady-state tracking”, IEEE Trans. Automat. Control, 40:11 (1995), 1872–1880 | DOI | Zbl
[14] Khammash M.H., “Robust performance: Unknown disturbances and known fixed inputs”, IEEE Trans. Automat. Control, 42:12 (1997), 1730–1734 | DOI | Zbl
[15] Sokolov V.F., “Asimptoticheskoe robastnoe kachestvo diskretnoi sistemy slezheniya v $\ell_1$-metrike”, Avtomatika i telemekhanika, 1999, no. 1, 101–112 | Zbl
[16] Sokolov V.F., “Adaptive $\ell_1$ robust control for SISO system”, Systems Control Letters, 42:5 (2001), 379–393 | DOI | Zbl
[17] Sokolov V.F., “Closed-loop identification for the best asymptotic performance of adaptive robust control”, Automatica, 32:8 (1996), 1163–1176 | DOI | Zbl
[18] Picasso B., Colaneri P., “Non-minimal factorization approach to the $\ell_\infty$-gain of discrete-time linear systems”, Automatica, 49:9 (2013), 2867–2873 | DOI | Zbl
[19] Sánchez-Peña R.S., Sznaier M., Robust systems theory and applications, John Wiley Sons, Inc, 1998, 486 pp.