Mots-clés : time scale.
@article{TIMM_2021_27_3_a12,
author = {N. N. Petrov},
title = {On a problem of pursuing a group of evaders in time scales},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {163--171},
year = {2021},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a12/}
}
N. N. Petrov. On a problem of pursuing a group of evaders in time scales. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 163-171. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a12/
[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp.
[2] Chikrii A.A., Konfliktno upravlyamye protsessy, Nauk. dumka, Kiev, 1992, 384 pp.
[3] Grigorenko N.L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo MGU, M., 1990, 197 pp.
[4] Blagodatskikh A.I., Petrov N.N., Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob'ektov, Izd-vo Udmurt. un-ta, Izhevsk, 2009, 266 pp.
[5] Bopardikar S.D., Suri S., “$k$-Capture in multiagent pursuit evasion, or the lion and the gyenas”, Teoretical Computer Science, 522 (2014), 13–23 | DOI | Zbl
[6] Aulbach B., Hilger S., “Linear dynamic processes with inhomogeneous time scale”, Nonlinear dynamics and quantum dynamical systems, Contributions to the international seminar ISAM-90 (Gaussig (GDR)), v. 59, eds. G.A. Leonov, V. Reitmann, W. Timmermann, Akademie-Verlag, Berlin, 1990, 9–20
[7] Hilger S., “Analysis on measure chains - a unified approach to continuous and discrete calculus”, Results in Mathematics, 18 (1990), 18–56 | DOI | Zbl
[8] Benchohra M., Henderson J., Ntouyas S., Impulsive differential equations and inclusions, Hindawi Publ., N Y, 2006, 381 pp. | Zbl
[9] Bohner M., Peterson A., Advances in dynamic equations on time scales, Birkhauser, Boston, 2003, 348 pp. | Zbl
[10] Martins N., Torres D., “Necessary conditions for linear noncooperative N-player delta differential games on time scales”, Discussiones Mathematicae, Differential Inclusions, Control and Optimization, 31:1 (2011), 23–37 | DOI | Zbl
[11] Petrov N.N., “Zadacha prostogo gruppovogo presledovaniya s fazovymi ogranicheniyami vo vremennykh shkalakh”, Vest. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 30:2 (2020), 249–258 | DOI
[12] Vagin D.A., Petrov N.N., “Prostoe presledovanie zhestko soedinennykh ubegayuschikh”, Izv. RAN. Teoriya i sistemy upravleniya, 2001, no. 5, 75–79 | Zbl
[13] Machtakova A. I., “Presledovanie zhestko skoordinirovannykh ubegayuschikh v lineinoi zadache s drobnymi proizvodnymi i prostoi matritsei”, Izv. In-ta matematiki i informatiki Udmurt. gos. un-ta, 54 (2019), 45–54 | Zbl
[14] Guseinov G.S., “Integration on time scales”, J. Math. Anal. Appl., 285:1 (2003), 107–127 | DOI | Zbl
[15] Cabada A., Vivero D. R., “Expression of the Lebesgue $\Delta$-integral on time scales as a usual Lebesgue integral; application to the calculus of $\Delta$-antiderivatives”, Math. Comp. Modelling, 43:1–2 (2006), 194–207 | DOI | Zbl
[16] Petrov N.N., “Ob upravlyaemosti avtonomnykh sistem”, Differents. uravneniya, 4:4 (1968), 606–617 | Zbl
[17] Vinogradova M.N., Petrov N.N., Soloveva N.A., “Poimka dvukh skoordinirovannykh ubegayuschikh v lineinykh rekurrentnykh differentsialnykh igrakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:1 (2013), 41–48
[18] Pshenichnyi B.N., “Prostoe presledovanie neskolkimi ob'ektami”, Kibernetika, 1976, no. 3, 145–146 | Zbl
[19] Ivanov R.P., “Prostoe presledovanie-ubeganie na kompakte”, Dokl. AN SSSR, 254:6 (1980), 1318–1321 | Zbl