On a problem of pursuing a group of evaders in time scales
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 163-171 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A problem of pursuing a group of evaders by a group of pursuers with equal capabilities for all the participants is considered in a finite-dimensional Euclidean space $\mathbb R^k$. In a given time scale $T$, the problem is described by a system $$ z_i^{\Delta}=u_i-v,$$ where $f^{\Delta}$ is the $\Delta$-derivative of $f$ in the time scale $T$. The set of admissible controls is a ball of unit radius centered at the origin. The terminal sets are the origin. In addition, it is assumed that all the evaders use the same control and, during the game, stay within a convex polyhedral set with nonempty interior. Sufficient conditions are obtained for the solvability of the problem of capturing at least one evader. The method of resolving functions is used as a basis of this research.
Keywords: differential game, pursuer, evader, group pursuit
Mots-clés : time scale.
@article{TIMM_2021_27_3_a12,
     author = {N. N. Petrov},
     title = {On a problem of pursuing a group of evaders in time scales},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {163--171},
     year = {2021},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a12/}
}
TY  - JOUR
AU  - N. N. Petrov
TI  - On a problem of pursuing a group of evaders in time scales
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 163
EP  - 171
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a12/
LA  - ru
ID  - TIMM_2021_27_3_a12
ER  - 
%0 Journal Article
%A N. N. Petrov
%T On a problem of pursuing a group of evaders in time scales
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 163-171
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a12/
%G ru
%F TIMM_2021_27_3_a12
N. N. Petrov. On a problem of pursuing a group of evaders in time scales. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 163-171. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a12/

[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp.

[2] Chikrii A.A., Konfliktno upravlyamye protsessy, Nauk. dumka, Kiev, 1992, 384 pp.

[3] Grigorenko N.L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo MGU, M., 1990, 197 pp.

[4] Blagodatskikh A.I., Petrov N.N., Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob'ektov, Izd-vo Udmurt. un-ta, Izhevsk, 2009, 266 pp.

[5] Bopardikar S.D., Suri S., “$k$-Capture in multiagent pursuit evasion, or the lion and the gyenas”, Teoretical Computer Science, 522 (2014), 13–23 | DOI | Zbl

[6] Aulbach B., Hilger S., “Linear dynamic processes with inhomogeneous time scale”, Nonlinear dynamics and quantum dynamical systems, Contributions to the international seminar ISAM-90 (Gaussig (GDR)), v. 59, eds. G.A. Leonov, V. Reitmann, W. Timmermann, Akademie-Verlag, Berlin, 1990, 9–20

[7] Hilger S., “Analysis on measure chains - a unified approach to continuous and discrete calculus”, Results in Mathematics, 18 (1990), 18–56 | DOI | Zbl

[8] Benchohra M., Henderson J., Ntouyas S., Impulsive differential equations and inclusions, Hindawi Publ., N Y, 2006, 381 pp. | Zbl

[9] Bohner M., Peterson A., Advances in dynamic equations on time scales, Birkhauser, Boston, 2003, 348 pp. | Zbl

[10] Martins N., Torres D., “Necessary conditions for linear noncooperative N-player delta differential games on time scales”, Discussiones Mathematicae, Differential Inclusions, Control and Optimization, 31:1 (2011), 23–37 | DOI | Zbl

[11] Petrov N.N., “Zadacha prostogo gruppovogo presledovaniya s fazovymi ogranicheniyami vo vremennykh shkalakh”, Vest. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 30:2 (2020), 249–258 | DOI

[12] Vagin D.A., Petrov N.N., “Prostoe presledovanie zhestko soedinennykh ubegayuschikh”, Izv. RAN. Teoriya i sistemy upravleniya, 2001, no. 5, 75–79 | Zbl

[13] Machtakova A. I., “Presledovanie zhestko skoordinirovannykh ubegayuschikh v lineinoi zadache s drobnymi proizvodnymi i prostoi matritsei”, Izv. In-ta matematiki i informatiki Udmurt. gos. un-ta, 54 (2019), 45–54 | Zbl

[14] Guseinov G.S., “Integration on time scales”, J. Math. Anal. Appl., 285:1 (2003), 107–127 | DOI | Zbl

[15] Cabada A., Vivero D. R., “Expression of the Lebesgue $\Delta$-integral on time scales as a usual Lebesgue integral; application to the calculus of $\Delta$-antiderivatives”, Math. Comp. Modelling, 43:1–2 (2006), 194–207 | DOI | Zbl

[16] Petrov N.N., “Ob upravlyaemosti avtonomnykh sistem”, Differents. uravneniya, 4:4 (1968), 606–617 | Zbl

[17] Vinogradova M.N., Petrov N.N., Soloveva N.A., “Poimka dvukh skoordinirovannykh ubegayuschikh v lineinykh rekurrentnykh differentsialnykh igrakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:1 (2013), 41–48

[18] Pshenichnyi B.N., “Prostoe presledovanie neskolkimi ob'ektami”, Kibernetika, 1976, no. 3, 145–146 | Zbl

[19] Ivanov R.P., “Prostoe presledovanie-ubeganie na kompakte”, Dokl. AN SSSR, 254:6 (1980), 1318–1321 | Zbl